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Abstract

Diagonally scaling a matrix often reduces its condition number. Equilibration scales a matrix so

that the row and column norms are equal. We review the existence and uniqueness theory for

exact equilibration. Then we introduce a formalization of approximate equilibration and develop its

existence and uniqueness theory. Next we develop approximate equilibration algorithms that access

a matrix only by matrix-vector products. We address both the nonsymmetric and symmetric cases.

Limited-memory quasi-Newton methods may be thought of as changing the metric so that the

steepest-descent method works effectively on the problem. Quasi-Newton methods construct a ma-

trix using vectors of two types involving the iterates and gradients. The vectors are related by

an approximate matrix-vector product. Using our approximate matrix-free symmetric equilibration

method, we develop a limited-memory quasi-Newton method in which one part of the quasi-Newton

matrix approximately equilibrates the Hessian.

Often a differential equation is solved by discretizing it on a sequence of increasingly fine meshes.

This technique can be used when solving differential-equation-constrained optimization problems.

We describe a method to interpolate our limited-memory quasi-Newton matrix from a coarse to a

fine mesh.
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Chapter 1

Introduction

Quasi-Newton methods

Consider the unconstrained quadratic program minx f(x) for f(x) ≡ 1
2xT Ax + bT x. The gradient

is g(x) ≡ ∇f(x) = Ax + b. In a quasi-Newton (QN) method, an approximation to the Hessian is

constructed by assembling pairs {s, y} into a matrix. s is the difference between iterates: s ≡ x+−x;

y is the difference between the gradients at the iterates: y ≡ g+ − g. x+ occurs at the iteration

subsequent to x, and similarly for other quantities using the superscript-+ notation. Observe that

As = y and so s and y are related by a matrix-vector product involving the Hessian. For a general

optimization problem, the two are approximately related by a matrix-vector product.

On an unconstrained convex quadratic program, many quasi-Newton methods obtain the Hessian

after a finite number of iterations. In real applications—for example, on nonconvex, constrained

problems; and on very large problems for which the storage for a quasi-Newton matrix is limited—

the Hessian is not recovered. A QN method may be thought of as changing the metric of the

problem while the problem is being solved. Search directions are then steepest-descent directions

for the modified problem corresponding to the current QN matrix.

A matrix B0 initializes the QN matrix. Most often, B0 is chosen to be a diagonal matrix. An

algorithm can change B0 as often as at each update of the QN matrix. Section 3.1.2 shows that in

Broyden-class QN methods, a diagonal B0 may be interpreted as scaling the problem. Therefore,

an effective choice for B0 is a scaling matrix that minimizes the condition number of the Hessian.

The time a solver requires to find a solution is a key performance criterion. Time may be divided

into two parts: time spent in the solver, chiefly on linear algebra operations; and time spent in the

user function, which is the software client’s implementation of the problem. For many problems,

the time required by the solver is considerably less than the time required by the user function.

Hence an optimization algorithm is often developed with the objective of minimizing the number of

user function calls. Improving the particular QN method an optimization software package uses can

1



2 CHAPTER 1. INTRODUCTION

reduce the number of user function calls required to solve a problem.

Matrix equilibration

The performance of many algorithms, particularly iterative ones, depends on the condition number

of an underlying matrix. For example, the convergence rate of the steepest-descent method and

Krylov-subspace methods depends on the condition number relevant to the problem. Hence a good

scaling method substantially reduces the condition number of the matrix.

If a matrix is symmetric positive definite, scaling it to unit diagonal is effective and always

possible. If a matrix is indefinite, such scaling—substituting, say, 1 for a 0 diagonal element—is less

often effective. Far more effective in the latter case is scaling the matrix so that its row and column

norms are all equal. This scaling procedure is called equilibration. If a matrix is symmetric, one

generally prefers symmetric scaling. The theory for symmetric scaling is often more intricate than

for nonsymmetric scaling; additionally, algorithms must be specialized to this case.

For a particular scaling method, we ask three questions: 1. What matrices can be scaled by

the method? 2. Is the resulting scaled matrix unique? 3. Are the scaling matrices unique? The

first question is self-evidently important: a problem solver wants to know in advance whether a

particular matrix of interest is scalable by a particular method. A positive answer to the second

question assures that, relative to the particular scaling method, an algorithm has done as well as it

can: there is not another scaled matrix that is better—say, has a lower condition number. The third

question may matter if one wants the scaling matrices to have particular properties: for example,

to have a bounded condition number. Nonuniqueness provides freedom to vary the scaling matrices

according to additional criteria.

It is unnecessary to scale a matrix exactly; approximate scaling may achieve a sufficient reduction

in condition number. The class of approximately scalable matrices may be larger than the class of

exactly scalable matrices.

Matrix-free methods

An algorithm is said to be a matrix-free method if it obtains information about a matrix only through

matrix-vector products. Matrix-free methods are useful when a matrix is represented implicitly: for

example, by a factorization or by an algorithm. If a matrix is accessible only by matrix-vector

products, we think of the matrix as an operator.

Quasi-Newton methods for differential-equation-constrained optimization problems

Simulating a physical phenomenon often involves solving a system of differential equations. The

engineer or scientist may want to do more than simply simulate a system. An increasingly common

computational problem is to optimize parameters governing the physical system. The resulting

problem is a differential-equation-constrained optimization problem (DECP).
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A common technique for solving a differential equation is to solve the discretized problem on a

sequence of increasingly fine meshes. Often the fine mesh is adapted to the solution on the coarse

mesh. The same technique is useful when solving a DECP. If a quasi-Newton method is used, the

data by which the QN matrix is formed on the coarse mesh may be useful to initialize the QN matrix

on the fine mesh.

Our work

In Chapter 2, we review the theory governing the existence of exactly scalable matrices and the

uniqueness of the scaling matrices and the scaled matrix. Then we introduce ε-scaling, a formaliza-

tion of approximate equilibration, and develop the analogous existence and uniqueness theory. We

discuss both the nonsymmetric and symmetric cases.

Next we develop matrix-free methods to approximately scale symmetric, square nonsymmetric,

and rectangular matrices. We test our algorithms on a large, well-known test set of matrices.

Our performance criteria are change in condition number and a metric quantifying the degree of

equilibration.

In Chapter 3, we use our ideas on matrix-free approximate equilibration to develop a limited-

memory quasi-Newton method. The algorithm updates B0 to scale the problem. It uses the pairs

{s, y} just as any QN method does, and so no additional user function calls are necessary. That s

and y are related by an approximate matrix-vector product provides the crucial connection to our

matrix-free equilibration methods. Since our algorithm updates B0, it complements standard QN

methods that build on the initial matrix B0. We combine our update with a well-known limited-

memory method.

After designing and analyzing the method, we describe its implementation in SNOPT [25], a

software package that is designed to solve large, generally constrained optimization problems. Then

we test the modified SNOPT on six test sets. While computation time is ultimately the only

important criterion, it can be quite deceptive when testing an algorithm on test sets of problems.

The test set may contain a mix of problems having different sizes and characteristics, for example.

Thus, while we report time for test sets for which time makes sense, our primary assessment criterion

is the number of user function calls.

In Chapter 4, we develop a method to interpolate a limited-memory quasi-Newton matrix from

a coarse mesh to a fine one. We report results for two classes of problems.



Chapter 2

Equilibration of matrices

Preconditioning a matrix is an important first step for solving a linear equation; iterative methods

particularly benefit. Broadly, preconditioning is intended to cluster eigenvalues or to reduce the

condition number of a matrix. Problem-dependent preconditioners often achieve both goals. In

the absence of any other preconditioner, a diagonal scaling matrix is useful to reduce the condition

number of a matrix. The problem of finding a diagonal scaling matrix has the equivalent names

equilibration, balancing, and binormalization. Equilibration algorithms exist to achieve a number of

different objectives: for example, unit diagonal elements, equal row or column p-norms, bounded

elements. The objectives may be achieved either exactly or approximately.

For a particular type of scaling, several questions arise: What is the class of matrices that can

be scaled? Is the scaling unique? How much is the condition number of the matrix decreased? Must

the scaling be exact, or can it be approximate? For a particular problem, additional questions arise.

What algorithms can implement the scaling? In particular, does one have access to the elements of

the matrix, or must one use matrix-vector products only?

In this chapter, we consider the problem of scaling a square matrix A by positive diagonal matrices

so that the p-norm of each row and column of the resulting matrix is approximately the same. Our

focus is on the symmetric problem, in which a symmetric matrix is symmetrically scaled. First,

we review existence and uniqueness theorems for exact scaling of A. Second, we develop and prove

a necessary and sufficient condition for approximately scaling positive diagonal matrices to exist.

Third, we develop two new approximate scaling algorithms that balance the row and column 2-norms

and that access A only through matrix-vector products. Finally, we describe the performance of the

algorithms on a large test set.

4
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2.1 Background

2.1.1 Notation

The vectors x and d are special: xi ≡ d−1
i . Let V ≡ diag(v), where v is a vector. For a matrix

A, let B be such that Bij = |Aij |p. If p = 2, B ≡ A ◦ A, i.e., B is the element-wise (Hadamard)

product of A. If A is complex, the ◦ operator conjugates the first argument. e is the vector of all

ones. The square of a vector is applied by element: (v2)i ≡ v2
i . Similarly, a vector product written

as xy is performed by element: (xy)i = xiyi. An inequality such as v > 0, where v is a matrix or

vector, applies element-wise. Index sets are denoted by calligraphic letters, and N is reserved for

the set {1, 2, . . . , n}. The cardinality of the set is denoted, for example, |N | = n. Often a sum over

an index set is abbreviated when the index set is clear; for example,
∑

i∈N may be written simply

as
∑

i.

2.1.2 The scaling equation

Suppose we want the p-norm of each row of the symmetric matrix A to be c > 0. We must find a

vector x > 0 such that

xi

∑

j

|Aij |pxj = c,

or, more compactly,

XBx = ce. (2.1)

If x∗ satisfies (2.1) for c = c1 > 0, then
√

c2/c1x
∗ is a solution for c = c2 > 0. Consequently, we

need not consider the particular value of c > 0 in what follows and so we set c = 1.

We refer to (2.1) as the scaling equation. Although algorithms must use A, existence and unique-

ness theory need consider only the nonnegative matrix B. If p = 1 and A is nonnegative, then

A = B. We reserve the term binormalization for the case p = 2. We say A is scalable if there exists

x > 0 satisfying (2.1). We call such a vector a scaling vector or, on occasion in the case of p = 2,

a binormalization vector. If two matrices B1 and B2 are related to each other by B2 = XB1X, we

say the two are diagonally equivalent.

Observe that c−1XBX is doubly stochastic.

Not all matrices are scalable. Furthermore, the benefits of scaling may be obtained by approxi-

mate rather than exact scaling. Livne and Golub [42] introduced a measure of approximate scaling:

A is scaled to a residual whose norm is ε if ‖XBx− e‖ = ε. We introduce the following definition:

A is ε-scalable if for any ε > 0, there exists x > 0 satisfying ‖XBx − e‖ ≤ ε. Of course a scalable

matrix is ε-scalable.
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Nonsymmetric scaling is similar. In this case, there exist x, y > 0 such that

XBy = e and Y BT x = e.

If A is rectangular, the row and column norms may differ in magnitude. We address the rectangular

case in numerical experiments only; our theoretical analysis assumes A is square. A is nonsymmet-

rically ε-scalable if for every ε > 0, each equation can be satisfied to a residual having norm no

greater than ε.

Numerical experiments (see, e.g., [42] and Section 2.4) for the case p = 2 show that the condition

number of the scaled matrix A is often considerably less than that of A. For indefinite A, the far

simpler procedure of scaling to unit diagonal elements is undefined if a diagonal element is zero

and problematic if a diagonal element is small. Furthermore, the reduction in condition number is

frequently substantially less than that achieved by equilibration.

2.1.3 Context and main results

Equilibration of matrices has a long history. Research on this problem divides into three parts:

analyzing the improvement diagonal scaling offers, either in terms of reducing the condition number

or a related quantity of the matrix or in terms of the improvement in sparsity or quality of a

factorization; finding necessary or sufficient conditions for the existence or uniqueness of diagonal

scaling matrices; and developing and analyzing algorithms. Several equilibration problems exist,

although all are generally formulated in terms of nonnegative matrices; most notable are variations

in which row or column norms are not equal but rather are specified by positive vectors.

Existence and uniqueness

Sinkhorn wrote a series of papers in the 1960s that detailed some of the existence and uniqueness

theory governing matrix equilibration. Sinkhorn and Knopp’s paper [62] is quite frequently cited

and contains the well-known iteration for matrix balancing that bears their names. Sinkhorn and

Knopp proved the major convergence result for the algorithm in [62] in the course of proving the

condition for existence of scaling matrices for the nonsymmetric problem; independently, Brualdi,

Parter, and Schneider proved overlapping results in [9]. Before we can discuss their theorems, we

must introduce some definitions and preliminary results.

A square matrix has total support if every nonzero element occurs in the positive main diagonal

of a matrix that is a column permutation of the original matrix. Formally, let A be a square matrix

having total support, and suppose Aij is nonzero. Then there exists a permutation σ such that

σ(i) = j and each Akσ(k) is nonzero. We say that σ, or alternatively the positive diagonal associated

with σ, supports the nonzero element Aij .

A matrix has support that is not total, or simply has support, if a positive main diagonal exists
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under a column permutation. By this definition it is evident that a square matrix has support if

and only if it is structurally nonsingular [18].

Mirsky and Perfect [44] showed that a matrix has total support if and only if there exists a

doubly stochastic matrix having the same zero pattern. Other authors use only the “if” part, which

follows directly from Birkhoff’s Theorem: a doubly stochastic matrix is a convex combination of

permutation matrices (see, e.g., Theorem 8.7.1 of [28]).

A matrix A is partly decomposable if there exist permutation matrices P and Q such that

PAQ =

(

B

C D

)

,

where B and D are square matrices. A square matrix is fully indecomposable if it is not partly

decomposable. A fully indecomposable matrix has total support [8].

Sinkhorn and Knopp proved the following in [62].

Theorem 1 (Sinkhorn and Knopp). Let A be a nonnegative square matrix.

1. A is scalable if and only if A has total support. That is, there exist positive diagonal matrices

D1 and D2 such that B ≡ D1AD2 is doubly stochastic.

2. If A is scalable, then B is unique.

3. D1 and D2 are unique up to a scalar multiple if and only if A is fully indecomposable.

4. The Sinkhorn-Knopp iteration converges to a doubly stochastic matrix if and only if A has

support. If A has support that is not total, then D1 and D2 have elements that diverge.

Hence scalability of a matrix is entirely determined by its zero pattern. Parts 1–3 were independently

discovered in [9]: the authors of each paper acknowledge the other accordingly. The necessity of

total support follows directly from Birkhoff’s theorem.

In addition to working on the nonsymmetric problem, Brualdi, Parter, and Schneider [9] provided

an early existence result for scaling symmetric matrices. Their Corollary 7.7 is equivalent to the

existence part of our Theorem 4. Marshall and Olkin [43] obtained overlapping results, and our

proof technique for Theorem 4 is essentially theirs. Brualdi and his coauthors also developed several

technical results. Corollary 7.8 concerns the structure of a matrix: Let A be nonnegative and

symmetric. Then every other (not necessarily symmetric) matrix B having the same zero pattern

as B can be scaled by a positive diagonal D so that DBD is row stochastic if and only if A has a

positive diagonal. Interestingly, their Lemma 7.3 reveals the same block structure (2.9) that we find

in our Theorem 3, although the mathematical setting is different. Theorem 8.2 of [9] states a rather

technical sufficient condition for uniqueness more general than our Theorem 4, and several other

more general sufficient conditions have appeared, including in [43].
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Brualdi, Parter, and Schneider proved a number of results for both the nonsymmetric and sym-

metric problems. However, according to Brualdi [7], Csima and Datta [16] obtained the definitive

existence theorem for symmetric scaling three years after the publication of [62] and [9].

Theorem 2 (Csima and Datta). A symmetric matrix is scalable if and only if it has total support.

Interestingly, the necessary and sufficient condition of total support in this theorem is identical to

that in part 1 of Theorem 1. The necessary part follows directly from part 1 of Theorem 1, but the

sufficiency part requires several steps. The key ideas are as follows. Total support of a symmetric

matrix A implies A is composed (in a precisely defined sense) of fully indecomposable matrices

having total support. Each such matrix can be scaled; by part 3 of Theorem 1, the scaling is unique;

and so the scaling is symmetric (because A = AT and if D1AD2 and D2A
T D1 are doubly stochastic

and A is fully indecomposable, D1 and D2 are unique up to a scalar multiple). The scaling matrices

for the submatrices of A can be assembled to form a scaling matrix for A. Total support is essential

to this proof, and so the matter remains of support that is not total.

It appears that subsequent work has not resolved the question. We discovered the following

condition and prove it in Section 2.2.2.

Theorem 3. A symmetric matrix is ε-scalable if and only if it has support.

An analog of the “if” part of Theorem 3 for the nonsymmetric problem is directly implied by part 4

of Theorem 1: one can terminate the Sinkhorn-Knopp iteration when the current iterate produces a

matrix that is approximately doubly stochastic to a given tolerance. Just as Theorem 2 reveals the

same condition as part 1 of Theorem 1, Theorem 3 reveals the same condition as part 4 of Theorem

1. Yet in both cases, the proofs are quite different for the nonsymmetric and symmetric problems.

The question of uniqueness remains. Part 2 of Theorem 1 states that if A has total support,

although D1 and D2 may not be unique, the doubly stochastic matrix D1AD2 is. Part 4 states that

if A has support that is not total, the Sinkhorn-Knopp iteration converges to a doubly stochastic

matrix C. Parlett and Landis [57] obtained the same result for a class of iterations obeying certain

conditions, of which the Sinkhorn-Knopp iteration is a member. Both sets of authors characterized

the matrix C as follows. To each nonzero element in Aij that lacks support there corresponds a zero

element Cij ; to each nonzero element Aij that has support there corresponds a nonzero element Cij .

This is not surprising: the equivalence of having total support and having the same zero pattern as

a doubly stochastic matrix (due to Perfect and Mirsky), combined with part 1 of Theorem 1, show

that a matrix lacking total support does not have the zero pattern of a doubly stochastic matrix.

However, neither Sinkhorn and Knopp nor Parlett and Landis answered the following question: In

what sense, if any, is C unique if A has support that is not total? We provide an answer to this

question in terms of ε-scalability in Theorem 6. By developing a uniqueness theorem in terms of

ε-scalability, we sidestep the issue of particular algorithms: any algorithm that ε-scales a matrix

yields a matrix C that is unique in the sense of Theorem 6.
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Quite a number of papers have reported new methods to prove classic results. For example,

Borobia and Canto [5] proved Sinkhorn’s early result on scaling positive matrices [61]—parts 1–3

of Theorem 1 applied to strictly positive matrices—using geometric methods. O’Leary [52] proved

Marshall and Olkin’s theorem from [43]—an spd matrix can be symmetrically scaled to achieve a

given positive row sum vector—using a new constructive method, and slightly extended the result.

Johnson and Reams [30] recently described a number of new conditions characterizing the exis-

tence of a scaling matrix for the symmetric problem when the matrix is general rather than nonneg-

ative. A symmetric matrix is copositive if xT Ax ≥ 0 for all x ≥ 0 and strictly copositive if xT Ax > 0

for x ≥ 0 and x 6= 0. Marshall and Olkin [43] showed that A is scalable if it is strictly copositive.

The rather technical Theorem 4 of [30] generalizes this condition by considering a certain cone.

Neumaier and Olschowka [49, 54] developed a scaling result related to structural rank for a

different kind of scaling than we consider. They showed that a (symmetric) matrix that has support

can be scaled so that every entry of the resulting (symmetric) matrix is bounded in magnitude by

1 and the diagonal elements are all 1.

Algorithms

Many equilibration algorithms have been proposed. The classical iteration is that of Sinkhorn and

Knopp, who first analyzed its convergence properties. According to Parlett and Landis [57], the

iteration itself was used as early as 1940, and according to Knight [35], as early as the 1930s in an

application to traffic flow. Parlett and Landis [57] developed several iterations that outperformed the

Sinkhorn-Knopp iteration on a test set. According to Knight and Ruiz [36], Khachiyan and Kalantari

[33] were the first to propose using Newton’s method to solve a particular system of equilibration

equations. Livne and Golub [42] developed an algorithm based on the Gauss-Seidel-Newton method

to solve the nonlinear binormalization equations. They proved that the algorithm converges locally.

In practice, only a few iterations of the algorithm are performed to obtain a vector that suitably

approximates a binormalization vector. Knight and Ruiz [36] compared their algorithm, an inexact

Newton method using the conjugate gradients iteration, favorably with the classical Sinkhorn-Knopp

iteration and a variation of Livne and Golub’s method.

Equilibration in the infinity norm is not unique and so motivates multiple algorithms that consider

both efficiency and quality of the scaling under criteria other than the infinity norms of the rows and

columns. A matrix can be scaled in the infinity norm if it has no zero rows or columns. The simplest

algorithm is as follows: First scale the rows (or columns), then scale the columns (or rows). After the

first scaling, the largest number in the matrix is 1, and the second scaling cannot produce numbers

that are larger than 1. Therefore, scaling is achieved after one iteration. Bunch [11] developed an

algorithm that equilibrates any symmetric matrix in the infinity norm. More recently, Ruiz [60]

developed another iteration that under his criteria compares favorably with Bunch’s algorithm.

Convergence results for exact scalability in which total support is an assumption immediately
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yield corresponding convergence results for ε-scalability. The proof of Theorem 3 shows that if A is

ε-scalable, an ε-scaling vector can be obtained by exactly scaling B + δI for sufficiently small δ. By

Lemma 6, a symmetric matrix whose main diagonal is positive has total support. Therefore, if an

algorithm converges for matrices having total support, then it converges for B + δI and so produces

an ε-scaling matrix for B.

Existence and uniqueness theory focuses on nonnegative matrices because equilibration in a p-

norm induces an equation on a nonnegative matrix even if the original matrix is general. But

equilibration algorithms must take into account sign information. Not all authors are interested

in scaling general symmetric matrices, and restricting the class of matrices on which an algorithm

operates can be advantageous. Most often authors restrict their attention to only nonnegative or

positive definite matrices. For example, Khachiyan and Kalantari [33] focus on spd matrices.

Matrix-free algorithms

To date it appears that all scaling algorithms for general symmetric matrices require access to

the elements of the matrix. If A is nonnegative, the situation is much different; for example,

the Sinkhorn-Knopp algorithm requires only the matrix-vector product Ax. For general matrices,

algorithms need at least matrix-vector products of the form |A|x (p = 1), (A◦A)x (p = 2), or similar

expressions. We introduce an approximate scaling algorithm for the case p = 2 that requires only

the matrix-vector product Ax.

Matrix-free and stochastic matrix-free methods have a vast literature. Of course the most com-

mon matrix-free methods are Krylov-subspace iterations. Stochastic matrix-free methods in linear

algebra may have a more recent origin, but stochastic methods for general problems go back at least

as far as the first work of Robbins and Monro [59] on what is now called stochastic approximation.

Bekas, Kokiopoulou, and Saad [1] developed a matrix-free method to estimate the diagonal elements

of a matrix. Chen and Demmel [14] developed a method to balance a matrix prior to eigenvalue

computations. (Balancing for eigenvalue problems is a similarity transform and so is not the same

as the balancing we discuss.)

2.1.4 Our contributions

Formalizing approximate scaling by ε-scaling is useful. Livne and Golub [42] seem to be the first

to have recognized the value of defining a measure of approximate scaling. But, first, they did not

make concrete their definition; and, second, they left open existence and uniqueness questions. We

realized that developing a definition of approximate scaling in terms of a limit can be useful, and

we answer existence and uniqueness questions in terms of this definition.

Without the framework of ε-scaling, it is hard to formulate concrete statements about scaling a

matrix that lacks support. For example, Parlett and Landis [57] wrote: “Note that matrices without

support are not covered by [Sinkhorn and Knopp’s theorem]. Such matrices are always singular, and
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V. Kahan (private communication) has shown that the sequence of iteration matrices . . . produced by

[the Sinkhorn-Knopp] iteration cycles for such a starting matrix.” This observation has in common

with others that statements about matrices lacking support are made with reference to the Sinkhorn-

Knopp iteration or algorithms that share certain properties with it. As another example, part 4 of

Theorem 1 concerns explicitly the Sinkhorn-Knopp iteration. In contrast, because Lemma 3 makes

a statement about ε-scaling, it assures that no algorithm—not just certain ones—can approximately

scale a matrix lacking support.

Some statements about ε-scaling follow directly from known results. Theorem 5 identifies support

as a sufficient condition for nonsymmetric ε-scaling, and the proof follows immediately from part

4 of Theorem 1. The proof of the necessary condition Lemma 3 is fairly straightforward and so

probably has been used before in a different context. Still, it may be new within the context of

scaling. For although the proof of Lemma 3 requires only a few minor changes to show that support

is a necessary condition for exact scaling, previous authors have used Birkhoff’s theorem to prove

this necessary condition in the exact case. Birkhoff’s theorem seems not to be applicable in the case

of ε- rather than exact scaling.

We believe Theorems 3 and 6 are new and are not immediate extensions of known results to the

framework of ε-scaling. Theorem 3 establishes a necessary and sufficient condition for a symmetric

matrix to be ε-scalable. Just as part 1 of Theorem 1 and Theorem 2 have the same condition but

require different proofs, so do Theorems 5 and 3. Theorem 6 establishes uniqueness in a certain

sense for both nonsymmetric and symmetric ε-scaling. This uniqueness result is analogous to part

2 of Theorem 1 for the case of exact scaling of a matrix having total support.

Finally, the stochastic iterations (2.25) and (2.27) are to our knowledge new and appear to be

the first matrix-free algorithms to scale a matrix at least approximately.

2.2 Existence and uniqueness

One reason for investigating the conditions under which a matrix is scalable is to determine when

scaling can be used as a preconditioner. From this practical viewpoint, approximate rather than

exact scaling is all that is required. Uniqueness of the scaled matrix—in the case of approximate

scaling, uniqueness in a certain meaningful sense—tells us that a particular scaling algorithm achieves

all that scaling permits by finding one set of scaling vectors: although there may be other sets of

scaling vectors, there is not some other, possibly better conditioned, scaled matrix.

In this section, we prove Theorems 3 and 6. The first gives the necessary and sufficient condition

for ε-scalability. The second establishes uniqueness of the approximately scaled matrix. So that

the theory supporting Theorem 3 is fully contained in this chapter, we prove a result about exact

scaling—Theorem 4, a condition for existence and uniqueness for exact scaling—that we shall use

in proving Theorem 3; furthermore, some of the steps of the proof of Theorem 4 are used in the
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proof of Theorem 10. The existence part of Theorem 4 is weaker than Theorem 2—a necessary and

sufficient condition for existence of an exact scaling matrix—and the uniqueness part is weaker than

other theorems in the literature, but it is all we need.

What follows is based on B, not A, and so is true for all p-norms; however, we often phrase the

statements of the theorems in terms of A.

2.2.1 Exactly scalable matrices

In this section, we prove the following.

Theorem 4. If every diagonal element of the symmetric matrix A is nonzero, then A is scalable.

Moreover, the scaling vector is unique.

We say x > 0 is the unique scaling vector for the matrix A if any other scaling vector y > 0 is related

to x by a scalar multiple.

An immediate corollary is that every positive definite matrix A has a unique scaling vector. The

existence part of the theorem is equivalent to Corollary 7.7 of [9]. The primary tool of finding a

function for which the scaling equation is a gradient is similar to that used in [43]. The uniqueness

part is weaker than Theorem 8.2 of [9] and the theorem of Marshall and Olkin [43].

Since x > 0, we can multiply both sides of (2.1) by X−1: Bx = X−1e. Rearranging, we recognize

that

g(x) ≡ Bx−X−1e

is the gradient of the function

f(x) ≡ 1

2
xT Bx−

∑

i

lnxi. (2.2)

The Hessian of f is

H(x) ≡ B + X−2.

Lemma 1. If Aii 6= 0 for each i, then f(x) has a minimizer x∗ > 0.

Proof. Let 2β ≡ mini Bii, which is positive by assumption. The first term of f is bounded below by

β‖x‖22 > 0. The second term is bounded as

−
n
∑

i=1

lnxi ≥ −n ln ‖x‖∞ ≥ −n‖x‖∞.

Therefore, as ‖x‖ → ∞, f →∞.
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Let χ ≡ mini xi. Because the second term of f goes to∞ as χ→ 0 and the first term is bounded

below by 0, f →∞ as χ→ 0.

Choose x̄ > 0, ε > 0 and let f̄ ≡ f(x̄). Since limχ→0 f(x) = lim‖x‖→∞ f(x) =∞, there exists a

compact set Ω containing x̄ on whose boundary ∂Ω f(y)|y∈∂Ω = f̂ ≥ f̄ + ε. Since x̄ ∈ Ω, f̄ = f̂ − ε,

and f ∈ C∞, Ω contains a minimizer x∗ of f in its interior. Therefore, f(x) has a minimizer

x∗ > 0.

Lemma 2. If Aii 6= 0 for each i and g(x) = 0, then H(x) is positive definite.

Proof. If XHX is positive definite, then so is H. Now,

XHX = XBX + I.

If g(x) = 0, then C ≡ XBX is doubly stochastic. Aii 6= 0 by assumption and so Cii > 0. By the

Gershgorin theorem [28], the eigenvalues of C lie in the union of discs centered on each of the Cii. As

Cii > 0 and the sum of the elements in a row is one, each disc has radius less than one. Therefore,

the minimum eigenvalue λmin(C) > −1, λmin(C + I) > 0, and so λmin(H) > 0.

Proof of Theorem 4. Since g(x) is the gradient of f(x), and g(x) = 0 if and only if x is a scaling

vector for A, a minimizer of f is a scaling vector for A. By Lemma 1, a scaling vector exists.

In fact, any stationary point of f is a scaling vector for A. But Lemma 2 shows that every

stationary point of f is a strong minimizer. f has only one stationary point because f ∈ C∞ exists

on the open set x > 0, limχ→0 f(x) = lim‖x‖→∞ f(x) = ∞, and every stationary point of f is a

strong minimizer. Therefore, A has a unique scaling vector.

A matrix with at least one zero diagonal element may be scalable, but the scaling vector may

not be unique. For example, consider

A =

(

1

1

)

and XBx = e. Both rows of A imply x1x2 = 1, and so there are infinitely many scaling vectors.

2.2.2 ε-scalable matrices

In this section, we find a necessary and sufficient condition for both nonsymmetric and symmetric

ε-scaling, and we show that the approximately scaled matrix is unique in a certain sense.
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Examples

Let us look at a few examples of the symmetric problem. Consider the structurally rank deficient

matrix

A =









1 1 1

1

1









(2.3)

and the scaling equation XBx = e. The second and third rows imply x1x2 = 1, x1x3 = 1;

substituting these into the first row yields

x2
1 + x1x2 + x1x3 = 1

x2
1 + 1 + 1 = 1

x2
1 = −1.

Therefore, XBx = e has no real solution, but it has two bounded imaginary solutions.

In contrast, consider the structurally (and numerically) nonsingular matrix A =

(

1 1

1

)

. The

second row implies x1x2 = 1; substituting this into the first row yields

x2
1 + x1x2 = 1

x2
1 + 1 = 1

x2
1 = 0.

Therefore, XBx = e has no solution. However, suppose we set x1 = ρ and x2 = ρ−1. Then

XBx− e =

(

ρ2

0

)

;

the residual goes to zero as ρ→ 0, and so A is ε-scalable.

As a more complicated example (and one that is not diluted—a technical condition in [42] under

which a matrix is not scalable—as the previous example matrix is), consider the structurally and

numerically nonsingular matrix

A =









1 1 1

1 1

1









.

The first and third rows imply x2
1 +x1x2 = 0, and so the equation does not have a positive solution.
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However, if we set x1 = ρ, x2 = 1, and x3 = ρ−1, then the residual goes to zero as ρ→ 0.

Finally, it is clear that the matrix A in (2.3) is not ε-scalable. For suppose the equations implied

by the second and third rows are satisfied to a residual ε. Then the first equation is

1 = x2
1 + x1x2 + x1x3 = x2

1 + (1 + O(ε)) + (1 + O(ε)) = x2
1 + 2 + O(ε)⇒ x2

1 = −1 + O(ε).

For ε sufficiently small, x2
1 is negative.

Results

Lemma 3. If B is ε-scalable, then it has support.

Proof. Suppose B lacks support but is ε-scalable.

The structural rank of B is the size of the maximum matching of the bipartite graph induced by

the rows and columns. Hence if B is structurally singular, then by Hall’s Theorem [34] it has a set

of column indices C such that the matrix B(:,C) (using Matlab notation) contains r < |C| nonzero

rows. Let the row indices of the nonzero rows be R; |R| = r.

If B is ε-scalable, then there exist x, y > 0 such that

XBy = e + O(ε) (row equations)

Y BT x = e + O(ε) (column equations).

Consider the sum over the column equations j ∈ C:
∑

j∈C

∑

i

Bijxiyj = |C|+ O(ε).

Each term in the lhs of this equation also appears in the sum over the row equations i ∈ R, and so

|C|+ O(ε) ≤
∑

i∈R

∑

j

Bijxiyj = |R|+ O(ε). (2.4)

But |R| < |C|, and so for ε sufficiently small, we have a contradiction. Hence B is not ε-scalable.

Lemma 4. If B has support, then it is nonsymmetrically ε-scalable.

Proof. By part 4 of Theorem 1, the Sinkhorn-Knopp iteration converges to a doubly stochastic

matrix if B has support. Let Ck be the scaled matrix at iteration k; C ≡ limk→∞ Ck is doubly

stochastic. Hence for every ε > 0, there is an iteration K such that for all k > K,

‖XkByk − e‖ ≤ ε and ‖Y kBxk − e‖ ≤ ε.

Combining Lemmas 3 and 4 yields the following theorem.
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Theorem 5. B is nonsymmetrically ε-scalable if and only if it has support.

Lemma 5. If B is ε-scalable, then so is PBQT for permutation matrices P and Q.

Proof. XBy = e + O(ε) = Pe + O(ε) = (PXPT )(PBQT )(Qy), and similarly for Y BT x.

Proof of Theorem 3. The necessary part of the theorem follows from Lemma 3, for if B is not

nonsymmetrically ε-scalable, then it is not symmetrically ε-scalable.

Now we prove the sufficiency part. Suppose δ > 0 in the equation

Y (B + δI)y = e. (2.5)

By Theorem 4, a unique x > 0 satisfies this equation. By the proof of Theorem 4, xi(δ) is a

continuous function of δ because it is the unique minimizer of

f(x, δ) ≡ 1

2
xT (B + δI)x−

∑

i

lnxi

for δ fixed, and f is a continuous function of (x, δ).

Suppose we use x(δ) as an approximate scaling vector for B. Then the residual to the scaling

equation is

XBx− e = −δXx. (2.6)

We shall show that if B has support, then limδ→0 δ‖Xx‖ = 0; and so for every ε > 0, there exists a

δ > 0 such that δ‖Xx‖ ≤ ε.

Let I ≡ {i : limδ→0 xi =∞}. Observe that

i, j ∈ I (possibly i = j) only if Bij = 0, (2.7)

for otherwise the term Bijxixj would grow without bound.

Let Z ≡ {i : Bij 6= 0 and j ∈ I}. If i ∈ Z, then limδ→0 xi = 0, for again otherwise the term

Bijxixj would grow without bound.

Let B ≡ {i : i /∈ I ∪ Z}. If i ∈ B, then because i /∈ I,

lim
δ→0

xi = x∗
i <∞. (2.8)

By Lemma 5, we can assume B is ordered such that the first |I| rows are the equations i ∈ I
and the next |Z| rows are the equations j ∈ Z. The blocks BII and BIB of B are zero. The first

follows from (2.7). The second is true because if Bij 6= 0 for i ∈ I, then j ∈ Z by the definition of

Z. Therefore, the only nonzero block in the first |I| rows is the middle one, BIZ . In summary, the
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block structure of B is

B =









BIZ

BZI BZZ BZB

BBZ BBB









. (2.9)

Corresponding to the ith row of (2.5) is equation i:

(Bii + δ)x2
i + xi

∑

j 6=i

Bijxj = 1.

Consider an equation k ∈ I. We arrange the terms so that

xk

∑

j∈Z

Bkjxj = 1− δx2
k. (2.10)

Summing the equations i ∈ Z,

∑

i∈Z



(Bii + δ)x2
i + xi

∑

j 6=i

Bijxj



 = |Z|, (2.11)

where |Z| is the number of elements in the set Z. Similarly, summing the equations k ∈ I in the

form (2.10),

∑

k∈I

xk

∑

j∈Z

Bkjxj = |I| − δ
∑

k∈I

x2
k. (2.12)

Because B is symmetric and has the block structure (2.9), every term in the lhs of (2.12) appears

in the lhs of (2.11). Subtracting (2.12) from (2.11),

∑

i∈Z

βi(δ)xi = (|Z| − |I|) + δ
∑

k∈I

x2
k, (2.13)

where

βi(δ) ≡ (Bii + δ)xi + xi

∑

j /∈{i}∪I

Bijxj .

By (2.8) and the definition of Z, limδ→0 βi(δ) = 0; and by the definition of Z, limδ→0 xi = 0.

Therefore, the lhs of (2.13) converges to 0.

Consider the rhs of (2.13). There are three cases to consider:

1. If |Z| > |I|, then the rhs is bounded away from 0, which contradicts that the lhs converges to

0.
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2. If |Z| < |I|, then B, and so A ∈ R
n×n, is structurally singular, which contradicts our assump-

tion. For if |Z| < |I|, then BIZ is taller than it is wide, and so A is structurally singular.

3. Consequently, |Z| = |I|, and so

lim
δ→0

∑

k∈I

δx2
k = 0, (2.14)

as is true of each term separately.

The limit (2.14) and the fact that every xi for i /∈ I is bounded above by definition implies that

the norm of the residual (2.6) converges to 0 as δ → 0.

Lemma 6. If B is structurally symmetric and has a positive main diagonal, then it has total support.

Proof. If Bij 6= 0, then a supporting permutation is σ such that σ(i) = i if i 6= j, σ(i) = j, and

σ(j) = i.

Let ts(B) be such that ts(B)ij = Bij if Bij = 0 or Bij has a supporting diagonal; hence ts(B)

has total support if B has support. Let pat(B) be such that pat(Bij) = 1 if and only if Bij 6= 0.

Let B be ε-scalable. An ε-scaling algorithm computes vectors x(ε) and y(ε) (possibly x(ε) = y(ε))

for ε > 0 such that the vectors satisfy the ε-scaling equation.

Lemma 7. If B is ε-scalable, then C ≡ limε→0 X(ε)BY (ε) is doubly stochastic.

Proof. By the definition of ε-scaling, X(ε)By(ε) = e+O(ε), and so limε→0 X(ε)By(ε) = limε→0 e+

O(ε) = e; and similarly for Y (ε)BT x(ε).

Let u ≡ limε→0 u(ε) for various vectors u. In some cases, elements of u are 0 or ∞.

Theorem 6. Let B be ε-scalable and C ≡ limε→0 X(ε)BY (ε), where x(ε) and y(ε) are produced

by any ε-scaling algorithm. C is the unique doubly stochastic matrix to which ts(B) is diagonally

equivalent.

Proof. 1. First, C has total support by Lemma 7 and the fact that a doubly stochastic matrix has

total support.

2. Second, scaling cannot introduce a nonzero Cij when Bij = 0; hence if Bij lacks support, then

Cij = 0. We shall show that if Bij 6= 0 and has support, then Cij 6= 0. These two statements imply

pat(C) = pat(ts(B)). (2.15)

3. By Lemma 5, we can assume that B and C are permuted such that

x(ε)j ∈ O(x(ε)i) and y(ε)j ∈ Ω(y(ε)i) for j ≥ i; (2.16)
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that is, asymptotically x(ε)j increases no faster than x(ε)i and y(ε)j decreases no faster than y(ε)i.

Consider a particular product χij ≡ limε→0 x(ε)iy(ε)j . If χij = ∞, then Bij = 0, for otherwise

Cij =∞. There must be at least one pair (i, j) in every row and every column such that 0 < χij <∞,

for otherwise C would lack support.

Suppose there is a pair (i, j) such that χij = 0. By (2.16), χkm = 0 for all pairs (k,m) such that

k ≥ i and m ≤ j. Similarly, suppose there is a pair (i, j) such that χij =∞; then χkm =∞ for all

pairs (k,m) such that k ≤ i and m ≥ j.

Given a pair (k,m) such that χkm = 0, we can find a pair (i, j) such that χij = 0, χ(i−1)j 6= 0,

and χi(j+1) 6= 0; for otherwise C would have a zero column or row and so lack support. As

χij = 0 but χ(i−1)j 6= 0, x(ε)i /∈ Ω(x(ε)i−1); and x(ε)i ∈ O(x(ε)i−1) by (2.16). Furthermore,

x(ε)i−1 ∈ Θ(y(ε)−1
j ) and so 0 < χ(i−1)j < ∞, for otherwise C would have a zero column and so

lack support. Similarly, y(ε)j+1 6= O(y(ε)j), y(ε)j+1 ∈ Ω(y(ε)j), and y(ε)−1
j+1 ∈ Θ(x(ε)i). Hence

χ(i−1)(j+1) =∞, and so χ has the block structure

χ =

(

0 < χAC <∞ ∞
0 0 < χBD <∞

)

and so C has the block structure

C =

(

CAC

CBD

)

.

As C has total support, each nonzero block has total support and so is square. Hence A = C and

C = D.

Now suppose Cij = 0 but Bij 6= 0 and has support. The pair (i, j) must be in the (2, 1) block

of χ. Consider a permutation σ that supports Bij . As σ(i) = j, there is a row a ∈ A such that

σ(a) ∈ B, and so Baσ(a) 6= 0. But χaσ(a) = ∞. That Baσ(a) 6= 0 and χaσ(a) = ∞ contradicts that

Caσ(a) = 0. Equation (2.15) follows.

4. Next, we show that ts(B) is diagonally equivalent to C. Consider a pair (i, j) such that Cij 6= 0.

As 0 < Cij < ∞, 0 < limε→0 xi(ε)yj(ε) < ∞. Hence there exists a function f(ε) such that

xi(ε), yj(ε)
−1 ∈ Θ(f(ε)). If Cik 6= 0 and k 6= j, yk(ε)−1 ∈ Θ(f(ε)), for otherwise 0 < Cik < ∞

does not hold; and similarly for Ckj and k 6= i. Hence there are index sets M and N such that

xi(ε) ∈ Θ(f(ε)) for i ∈ M and yj(ε)
−1 ∈ Θ(f(ε)) for j ∈ N . Let x̂i(ε) ≡ f(ε)−1xi(ε) for i ∈ M

and ŷj(ε) ≡ f(ε)yj(ε) for j ∈ N . Then 0 < x̂i < ∞ and 0 < ŷj < ∞. Furthermore, x̂i(ε)ŷj(ε) =

f(ε)−1xi(ε)f(ε)yj(ε) = xi(ε)yj(ε), and so Bij x̂iŷj = Cij .

We can repeat this process for all pairs (i, j) such that Cij 6= 0 and x̂i, ŷj have yet to be defined.

Once x̂i, ŷj are defined for every i and j, we have scaling vectors x̂, ŷ such that, recalling (2.15),

X̂ ts(B)Ŷ = C.
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5. Finally, by part 2 of Theorem 1, C is the unique doubly stochastic matrix to which ts(B) is

diagonally equivalent.

2.2.3 Symmetric positive definite matrices

Although we largely omit a discussion of conditioning results, the case of spd matrices will be

important to us when we consider quasi-Newton methods.

We call symmetric scaling of A such that the result has all unit diagonal elements Jacobi scaling.

If A is spd, then Jacobi scaling is always possible, as every diagonal element is positive.

Van der Sluis [63] showed the following. Let A be an n × n Hermitian positive definite matrix.

Suppose all the main diagonal elements are 1. Let κ(·) denote the condition number of a matrix.

Then κ(A) ≤ nmind κ(diag(d)Adiag(d)) (Theorem 4.1 of [63]). Additionally, if A has at most q

nonzero elements in any row, then κ(A) ≤ q mind κ(diag(d)Adiag(d)) (Theorem 4.3 of [63]).

Quite a bit earlier, Forsthye and Straus [21] proved the following tighter result for a class of

Hermitian p.d. matrices. A matrix B has Young’s property A if there exists a permutation matrix

P such that

PBPT =

(

D1 B1

B2 D2

)

,

where D1 and D2 are square diagonal matrices. If a Hermitian p.d. matrix A has Young’s property

A, then κ(A) ≤ mind κ(diag(d)Adiag(d)) (Theorem 4 of [21]).

In summary, in these three theorems Jacobi scaling is within a factor of n, q, or 1 of optimal

among all diagonal scaling matrices. Since Jacobi scaling is evidently quite effective on spd matrices,

we should investigate by how much equilibration differs from Jacobi scaling.

If A is spd, then so is B ≡ A ◦ A by the Schur Product Theorem (see, for example, Theorem

7.5.3 of [28]). Suppose A has unit diagonal elements. Then so does B. Moreover, if i 6= j, then

Bij < 1. For suppose Bij ≥ 1. Let v be the vector such that vi = 1, vj = −1, and vk = 0 for all

other elements. Then vT Bv = 2− 2Bij ≤ 0, which contradicts that B is spd.

Suppose Jacobi scaling has been applied to an n × n symmetric matrix Ā to yield a matrix A,

and again let B ≡ A◦A. If Ā is indefinite and has a zero diagonal element, we set the corresponding

element in the scaling vector to 1. Consider the vector of row sums b ≡ Be. If Ā is indefinite,

0 ≤ bi < ∞. If Ā is p.d., as every diagonal element of B is 1, bi ≥ 1; and as every off-diagonal

element Bij < 1, bi < n.

Let var(v) be the variance of an n-vector v: var(v) ≡ n−1
∑

i(vi − µ(v))2, where µ is the mean

of the elements. If a matrix is binormalized, then the variance of the vector of its row norms is 0. If

Ā is indefinite, var(Be) can be arbitrarily large. But if A is p.d., we have the following result.
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Theorem 7. If A is spd and has all unit diagonal elements, then var(Be) < (n− 1)2.

Proof. As each 1 ≤ bi = (Be)i < n, (bi − µ(b))2 < (n − 1)2. Therefore, n−1
∑

i(bi − µ(b))2 <

n−1
∑

i(n− 1)2 = (n− 1)2.

From the other direction, an immediate corollary of some results in [41] is that if an spd matrix Ā

is equilibrated in the 1-norm to form A, then n−1 < Aii ≤ 1 (the upper bound follows immediately

from equilibration to unit row and column 1-norms); if A is indefinite, of course, then −1 ≤ Aii ≤ 1.

Theorem 7 shows that when A is spd, Jacobi scaling produces a matrix that is not arbitrarily far

from being binormalized. This observation suggests that the two methods of scaling condition spd

matrices comparably. Numerical experiments in Section 2.4 compare the conditioning each method

yields on a set of spd matrices; the results are indeed quite similar.

2.3 Matrix-free approximate symmetric equilibration

Exact scaling algorithms for general matrices require access to the matrix elements. We develop

approximate algorithms that access the matrix only through matrix-vector products.

Our analysis in Section 2.2 shows that every structurally nonsingular matrix can be ε-scaled. The

degree of approximation is measured by ε, which quantifies how much the scaled matrix deviates

from being doubly stochastic. In a number of algorithms [42, 57, 62, 36], one can measure this error

at each iteration and terminate when it falls below ε.

As we focus on the problem in which one does not have direct access to the elements of the matrix,

our algorithms cannot monitor the error. In the absence of any error information, our algorithms

run for the number of iterations specified by the user and then terminate.

2.3.1 The symmetric Sinkhorn-Knopp iteration

Consider a nonnegative n × n matrix B. Let r and c be positive n-vectors. Recall our convention

that r−1 is the element-wise reciprocal of r. The Sinkhorn-Knopp iteration is as follows:

rk+1 = (Bck)−1

ck+1 = (BT rk+1)−1.

By Theorem 1, if B has total support, then the limits r ≡ limk→∞ rk and c ≡ limk→∞ ck exist

and RBC is doubly stochastic; and if B is fully indecomposable, r and c are unique up to a scalar

multiple.

The symmetric Sinkhorn-Knopp iteration is

xk+1 = (Bxk)−1.
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In this iteration, x alternately takes the role of r and c in the nonsymmetric iteration: in particular,

x2k = rk and x2k+1 = ck. Knight [35] discusses similar ideas. We shall see that because of the

simple relationship between x, r, and c, in general xk oscillates between two sequences.

A matrix A is reducible if there exists a permutation matrix P such that

PAPT =

(

B

C D

)

,

where B and D are square. Otherwise A is irreducible. Observe that if A is symmetric, then PAPT

is block diagonal and symmetric.

Theorem 8. If the symmetric nonnegative matrix B is irreducible and fully indecomposable, then

the symmetric Sinkhorn-Knopp iteration converges to x such that αXBX is doubly stochastic for

all positive starting vectors, where α > 0 is a scalar.

Proof. If B is fully indecomposable, then B has total support [8].

By part 4 of Theorem 1, as B has support, the nonsymmetric Sinkhorn-Knopp iteration converges

for all positive starting vectors. By part 3 of the same theorem, if B is fully indecomposable, the

scaling matrices D1 and D2 are unique up to a scalar multiple. As both D1BD2 and (D1BD2)
T are

doubly stochastic and D1 and D2 are unique up to a scalar multiple, d1 ∝ d2. Therefore, D1BD1

and D2BD2 are scalar multiples of each other and of a doubly stochastic matrix.

In the nonsymmetric Sinkhorn-Knopp iteration, let us associate the following vectors: x2k = rk

and x2k+1 = ck. As the nonsymmetric iteration converges, let r ≡ limk→∞ rk and c ≡ limk→∞ ck. By

our previous comments, r ∝ c and RBC is doubly stochastic. Let r = βc. Then RBR = βRBC and

CBC = β−1CBC. If the iteration terminates for k odd, the constant α = β; if even, α = β−1.

The theorem does not hold if B is reducible. Consider the matrix B = diag(1 2)T . If x0 = e,

the even iterates remain e while the odd iterates immediately converge to v ≡ (1 1/2)T . Of course

IBV equilibrates B. The symmetric equilibration vector is (1 1/
√

2)T =
√

ev.

That the symmetric Sinkhorn-Knopp may not converge on reducible matrices is not a problem.

The blocks of the reducible matrix B decouple the problem, and one can construct a symmet-

ric equilibrating vector x from the nonsymmetric equilibrating vectors r and c. Suppose r and c

equilibrate B by RBC. Let q ≡ c/r, and let I be the indices of a subset of identical elements

of q. If RBC is doubly stochastic, so is (αR)B(α−1C) for a scalar α. Set α =
√

c/r so that

αr(I) = α−1c(I) =
√

r(I)c(I) ≡ x(I). Repeating this procedure for each such subset of indices

yields the symmetric equilibration vector x.

Our algorithms are motivated by the symmetric Sinkhorn-Knopp iteration. They average iterates

and so do not exhibit the oscillation we have just discussed.
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2.3.2 Stochastic binormalization

The symmetric Sinkhorn-Knopp algorithm uses the matrix-vector product Bx. If A is a general

symmetric matrix, then Bij = |Aij |p for p ≥ 1, and so B is not available if one does not have access

to the elements of A. How can we compute Bx, at least approximately, by using a matrix-vector

product with A rather than B?

Let a be a vector, possibly random. Suppose a and the random vector u are independent.

Lemma 8. If the elements of u ∈ R
n have zero mean, positive and finite variance, and are iid, then

E (aT u)2 = ηE aT a. (2.17)

for finite η > 0.

Proof. Because E uiuj = 0 if i 6= j, E
(

∑

j ajuj

)2

= E
∑

j a2
ju

2
j = η

∑

j a2
j , where η = Eu2

j > 0 is

finite.

For use in Chapter 3, let f be the pdf of each element of u. Suppose f is symmetric around zero.

Then normalization is permitted, as demonstrated in the following lemma.

Lemma 9. If the elements of u ∈ R
n have positive and finite variance and are iid with pdf f , and

f is symmetric around zero, then

E
(aT u)2

uT u
= n−1E aT a.

Proof. A cross term now has the form

E
u1u2
∑

j u2
j

. (2.18)

We evaluate the integral as follows:

E
u1u2
∑

j u2
j

=

∫

Rn

u1u2
∑

j u2
j

∏

j

f(uj) duj

=

∫

Rn−1

u2

∏

j>1

f(uj)

(

∫ ∞

−∞

u1
∑

j u2
j

f(u1) du1

)

∏

j>1

duj .

The integrand in the inner integral is antisymmetric around zero and so the inner integral is zero.

Therefore, (2.18) is also zero.

As the cross terms are again zero,

E

(

∑

j ajuj

)2

∑

j u2
j

= E

∑

j a2
ju

2
j

∑

j u2
j

= ηE
∑

j

a2
j , where η = E

u2
i

∑

j u2
j

;
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and as

nη =
∑

i

E
u2

i
∑

j u2
j

= E

∑

i u2
i

∑

j u2
j

= 1,

we have η = n−1.

A vector u whose elements are iid normal random variables obeys the conditions of Lemma 9. Such

a vector samples uniformly from the unit sphere [47].

If a is complex valued, both Lemmas 8 and 9 generalize simply by considering (āT u)(aT u) rather

than (aT u)2. We present our algorithms using notation suitable only for real-valued matrices, but

they immediately extend to complex-valued matrices.

Returning to our problem, we can approximate Bx when p = 2 by computing the matrix-vector

product AX1/2u, where u obeys the assumptions of either Lemmas 8 or 9. By Lemma 8, for example,

E (AX1/2u)2 = η(AX1/2)2e = η(A ◦A)Xe = ηBx. (2.19)

To increase the accuracy of the estimate, one could compute the mean of multiple matrix-vector

products AX1/2u. Then one could construct an approximate scaling algorithm by replacing the

exact computation Bx with this estimate in the symmetric Sinkhorn-Knopp algorithm.

However, the methods of stochastic approximation suggest a better approach. In stochastic

approximation, the exact iteration

xk+1 = xk + ωkf(xk) (2.20)

is replaced by the stochastic iteration

xk+1 = xk + ωkf̂(xk),

where E f̂(xk) = f(xk) [38]. If several conditions are satisfied—some of which are not straightforward

to verify—then the second iteration converges with probability 1 to a limit point of the first.

Recall that the symmetric Sinkhorn-Knopp iteration is x+ = (Bx)−1. A scalar does not matter,

and so we can use the iteration x+ = ‖Bx‖−1
1 (Bx)−1. Let us rewrite the latter as follows. First,

d = x−1. Second, let ω = 1. Then

d+ =
Bx

‖Bx‖1
= (1− ω)

d

‖d‖1
+ ω

Bx

‖Bx‖1
.

If ω 6= 1, we have the new iteration

dk+1 = (1− ω)
dk

‖dk‖1
+ ω

Bxk

‖Bxk‖1
. (2.21)
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The iteration takes a convex combination of the current d and the Sinkhorn-Knopp update of d

when each of the two terms is normalized by its 1-norm and 0 < ω < 1. Furthermore, dk in (2.21)

is related to d̂k in the iteration

d̂k+1 = d̂k + ω

(

−d̂k +
‖d̂k‖1
‖Bx̂k‖1

Bx̂k

)

by a scalar, and the latter iteration has the form of (2.20) if ω is replaced by the sequence ωk.

We shall consider the stochastic iteration corresponding to (2.21) after we discuss some convergence

properties of the latter.

Sinkhorn and Knopp [62] proved that their iteration converges globally if the matrix has support;

Parlett and Landis [57] generalized the global convergence proof to all iterations that satisfy certain

conditions; and Theorem 8 proves the symmetric Sinkhorn-Knopp iteration converges globally if the

symmetric matrix B is irreducible and fully indecomposable. It appears that none of the methods

of proof can be extended to show the global convergence of the iteration (2.21) for two principal

reasons: our iteration is for the symmetric problem, and nonsymmetric scaling is essential to some

of the steps of the classic proofs; and the additional term (1−ω)d means row or column stochasticity

is not alternately achieved. However, we have the following partial results.

Lemma 10. The iteration (2.21), with 0 < ω ≤ 1, has a fixed point d∗ > 0 if and only if B has

total support.

Proof. Suppose the iteration (2.21) has a fixed point d∗:

d∗ = G(d∗) ≡ (1− ω)
d∗

‖d∗‖1
+ ω

Bx∗

‖Bx∗‖1
.

Let s∗ ≡ ‖Bx‖−1
1 . d∗ is a convex combination of two unit-1-norm vectors and so itself has unit

1-norm. Hence

d∗ = (1− ω)d∗ + ωs∗Bx∗

s∗X∗Bx∗ = e, (2.22)

and so d∗ is a scaling vector. As B is scalable, it has total support.

From the other direction, by Theorem 2, x > 0 exists such that XBx = ce, c > 0, and ‖d‖1 = 1,

if B has total support. Then Bx = cd. Substituting this expression into (2.21) shows that d is a

fixed point.

Theorem 9. If A is symmetric and has total support, then a fixed point d∗ > 0 of (2.21) is a point

of attraction for 0 < ω ≤ 1.

We shall require some supporting results.
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Lemma 11. Let A ∈ R
n×n be symmetric, and let {λi, vi} be its eigenvalues and eigenvectors. For

a ∈ R
n, the eigenvalues of A− v1a

T are {λ1 − aT v1, λ2, . . . , λn}.

Proof. A is diagonalized as A = V ΛV T . A− v1a
T is similar to

V T (A− v1a
T )V = Λ− e1b

T ,

where b ≡ V T a. The matrix on the rhs is upper triangular and so its eigenvalues lie on its diagonal.

Only the first eigenvalue λ1 is altered: it is λ1 minus the first element of b, which is just aT v1.

Theorem 10.1.3 of [55]. Suppose that G : D ⊂ R
n → R

n has a fixed point x∗ in the interior of D

and is Frechet-differentiable at x∗. If the spectral radius of G′(x∗) satisfies ρ(G′(x∗)) = σ < 1, then

x∗ is a point of attraction of the iteration xk+1 = G(xk).

Lemma 12. The iteration (2.21) is invariant to symmetric permutations.

Proof. Let P be a permutation matrix. Then

‖d‖1 = ‖Pd‖1
‖Bx‖1 = ‖(PBPT )(Px)‖1.

Hence if dk and dk+1 satisfy (2.21), then

Pdk+1 = (1− ω)
Pdk

‖Pdk‖1
+ ω

(PBPT )(Pxk)

‖(PBPT )(Pxk)‖1
,

and so Pdk and Pdk+1 satisfy (2.21) for the matrix PBPT .

Proof of Theorem 9. First we assume A is irreducible.

By Theorem 10.1.3 of [55], the theorem follows for irreducible A if ρ(∇dG(d)|d=d∗) < 1. The

Jacobian is

∇dG(d) = ∇xG(d)∇dx = −∇xG(d)X2

=
1− ω

‖d‖1
I − 1− ω

‖d‖21
deT − ω

‖Bx‖1
BX2 +

ω

‖Bx‖21
BxeT BX2.

By Lemma 10, a fixed point x = x∗ > 0 is a scaling vector. At such a point, Bx = s−1d by (2.22)

and ‖d‖1 = 1. Hence

∇dG(d)|d=d∗ = (1− ω)I − (1− ω)deT − ωsBX2 + ωs2BxeT BX2.
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Noting that Xd = e, we use X to obtain the similar matrix

X∇dG(d)|d=d∗X−1 = (1− ω)I − (1− ω)edT + ωsXBX − ωs2XBxeT BX. (2.23)

As XBx = s−1e and eT = dT X, XBxeT BX = s−1eeT BX = s−1edT XBX, and this is substituted

into the fourth term of (2.23). Combining the second and fourth terms, we obtain the rank-one

matrix

Q ≡ e[(ω − 1)dT − ωsdT XBX],

which has the nonzero eigenvalue [(ω − 1)dT − ωsdT XBX]e. As sdT XBXe = seT Bx = seT s−1d =

eT d, the eigenvalue is (ω − 1)dT e− ωeT d = −eT d = −‖d‖1 = −1.

Because sXBx = e and B is symmetric, C ≡ sXBX is doubly stochastic. First, ρ(C) ≤ 1.

Second, we already showed in the proof of Lemma 2 that λmin(C) > −1. Since C is symmetric, the

only eigenvalue having unit magnitude is 1. As for the moment we assume A is irreducible, by the

Perron-Frobenius theorem (see, for example, Theorem 8.4.4 in [28]), the eigenvalue 1 is simple.

Next, the rank-one matrix Q has the right eigenvector e. e is also a right eigenvector of C,

associated with the eigenvalue 1. Therefore, by Lemma 11, C̄ ≡ C+Q has the same eigenvalues as C,

except that the single eigenvalue 1 is now 0. We conclude that ρ(C̄) < 1; therefore, ρ((1−ω)I+ωC̄) <

1 as well, and so ρ(∇dG(d)|d=d∗) < 1, as desired.

Now suppose A is reducible. By Lemma 12, we can assume A is block diagonal and each block is

irreducible. Our analysis to this point applies to each block separately. As the Jacobian associated

with each block has spectral radius less than 1, so does the Jacobian as a whole.

Additionally, we can show global convergence for the simpler iteration

dk+1 = dk + αk(−dk + Bxk) = dk + αkh(dk), (2.24)

where αk is an appropriate step size. One way this iteration arises is as follows. Suppose we solve the

nonlinear equation f(d) ≡ d−Bx = 0 using Newton’s method. The Jacobian is J ≡ fd(d) = I+BX2,

and so Newton’s method yields the iteration

(I + BX2)(dk+1 − dk) = −dk + Bxk.

If we approximate the Jacobian by J ≈ I and introduce a step size, we obtain (2.24). However, we

treat the latter as a minimization method so that we can use certain techniques in our proof.

We use the following theorem.

Propositions 1.2.1 and 1.2.2 of [2]. Let {dk} be a sequence generated by a gradient method
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dk+1 = dk + αkhk, and assume that {hk} is gradient related and αk is chosen by the minimization

rule, the limited minimization rule, the Goldstein rule, or the Armijo rule. Then every limit point

of {dk} is a stationary point.

Various conditions assure {gk} is gradient related; we use the following: hk = −Hk∇f(dk), and the

eigenvalues of the positive definite symmetric matrix Hk are bounded above and below: λmin(Hk) ≥
c1 and λmax(H

k) ≤ c2.

Theorem 10. If A is symmetric and Aii 6= 0, then the iteration (2.24) converges globally if αk is

chosen according to one of the step size rules in Propositions 1.2.1 or 1.2.2 of [2].

Proof. Lemmas 1 and 2 show that the global minimizer of the function f(x) defined in (2.2) is a

scaling vector. To review, we define

f(x) ≡ 1

2
xT Bx−

∑

i

lnxi

g(x) ≡ ∇xf(x) = Bx− d

H(x) ≡ ∇2
xf(x) = B + D2.

f and its derivatives are defined with respect to x rather than d; in contrast, the iteration (2.24) is

defined with respect to d. f and its derivatives are transformed as follows:

fd(d) ≡ 1

2
xT Bx−

∑

i

lnxi = f(x)

gd(d) ≡ ∇df(d) = −X2g(x) = −X2Bx + x

Hd(d) ≡ ∇2
df(d) = 2X3diag(g(x)) + X2H(x)X2.

If H(x) is positive definite (as Lemma 2 shows), then so is Hd(d): X2H(x)X2 ≻ 0 because a

p.d. matrix remains p.d. if pre- and post-multiplied by symmetric (in this case, diagonal) matrices;

and 2X3diag(g(x)) is a p.d. diagonal matrix.

In the final paragraph of the proof to Lemma 1, we observe that given x̄ > 0, there exists a

compact set Ω containing x̄. As the minimizer of f lies in Ω, the iteration (2.24) has a limit point.

In the same proof we observe that f →∞ as any xi → 0 or xi →∞. Hence Ω ⊂ {x : x > 0}. Let x̄

be the initial point of the iteration. Let us define the following quantities relative to the boundary

of Ω:

dL ≡ inf
x∈∂Ω

min
i

di and dU ≡ sup
x∈∂Ω

max
i

di.

As any step size rule in Propositions 1.2.1 and 1.2.2 of [2] is such that fk+1 < fk, the iterates

remain in Ω. Hence for each iterate d and element di, dL < di < dU and so the eigenvalues
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of the matrix D2 are bounded from below and above by d2
L and d2

U respectively. Therefore, as

−D2gd(d) = g(x) = Bx− d = h(d), h(d) is gradient related.

Substituting (2.19) into (2.21) and replacing ω with ωk, we obtain the stochastic iteration

yk = (A(Xk)1/2uk)2

dk+1 = (1− ωk)
dk

‖dk‖1
+ ωk yk

‖yk‖1
. (2.25)

Based on numerical experiments, we choose ωk according to the rule

− log2 ωk = max(min(⌊log2(k)⌋ − 1, 4), 1). (2.26)

Consequently, 1/16 ≤ ωk ≤ 1/2 for all k, and ωk decreases by a factor of 2 at particular values of k.

This sequence for ωk allows for large changes in d/‖d‖1 when k is small and smaller changes when k

is large. Our numerical experiments show that the maximum number of iterations is a small fraction

of the size of the matrix; otherwise, the algorithm would not be useful.

The iteration (2.25) is straightforwardly generalized to the nonsymmetric problem. Let ρ and γ

be such that ρi = r−1
i and γi = c−1

i . Let v be a second random vector. Each iteration now performs

a forward and a transpose matrix-vector product:

yk = (A(Ck)1/2uk)2

ρk+1 = (1− ωk)
ρk

‖ρk‖1
+ ωk yk

‖yk‖1
(2.27)

zK = (AT (Rk)1/2vk)2

γk+1 = (1− ωk)
γk

‖γk‖1
+ ωk zk

‖zk‖1
.

We omit analysis of both the corresponding deterministic and this iteration because our results would

again be at best partial. But we show the results of extensive numerical experiments in Section 2.4.

For the problem of square nonsymmetric matrices, Theorems 5 and 6 completely characterize the

class of ε-scalable matrices; but we have not investigated the existence and uniqueness theory for

rectangular matrices.

Using the convergence theory of stochastic approximation (see, e.g., Chapters 4–6 of [38]), it may

be possible to show that if ωk is a sequence obeying certain conditions (in particular, limk→∞ ωk = 0,

and so the sequence (2.26) does not conform), then the sequences (2.25) and (2.27) converge with

probability 1 to scaling vectors. We have not succeeded in this analysis for these or similar iterations;

the analysis is quite technical and takes us far afield. In any case, our algorithm is practical only

if a small number of iterations succeeds in conditioning the matrix sufficiently, and so theoretical



30 CHAPTER 2. EQUILIBRATION OF MATRICES

function x = ssb in (A,nmv, n)
% Stocha s t i c matrix−f r e e b inorma l i za t i on fo r symmetric r e a l A.
% x = ssb in (A,nmv, n)
% A i s a symmetric r e a l matrix or func t i on handle . I f i t i s a
% func t i on handle , then v = A( x ) re turns A∗x .
% nmv i s the number o f matrix−vec tor products to perform .
% [ n ] i s the s i z e o f the matrix . I t i s necessary to s p e c i f y n
% only i f A i s a func t i on handle .
% diag ( x ) A diag ( x ) i s approximate ly b inormal i zed .

op = i s a (A, ’ f unc t i on hand l e ’ ) ;
i f (˜ op ) n = s ize (A, 1 ) ; end

d = ones (n , 1 ) ;
for ( k = 1 :nmv)

u = randn(n , 1 ) ;
s = u . / sqrt (d ) ;
i f ( op ) y = A( s ) ; else y = A∗ s ; end

omega = 2ˆ(−max(min( f loor ( log2 ( k ) ) −1 , 4 ) , 1 ) ) ;
d = (1−omega )∗d/sum(d) + omega∗y .ˆ2/sum( y . ˆ 2 ) ;

end

x = 1 ./ sqrt (d ) ;

Figure 2.1: Matlab implementation of the symmetric stochastic binormalization algorithm ssbin.

results that apply in the limit k → ∞ are not necessarily relevant. In the end, we have chosen to

motivate our algorithms by examining a deterministic sequence and then demonstrate their efficacy

on a large test set, to the results of which we now turn.

2.4 Numerical experiments

Framework

Figure 2.1 shows a Matlab implementation of ssbin, the stochastic binormalization algorithm for

symmetric matrices corresponding to the sequence (2.25); and Figure 2.2 shows an implementation

of snbin, the stochastic binormalization algorithm for nonsymmetric matrices corresponding to the

sequence (2.27).

We test our algorithms in Matlab on problems in the University of Florida Sparse Matrix

Collection [17]. We use the following Matlab code to obtain matrices obeying our criteria:

index = UFget ( ’ r e f r e s h ’ ) ;

% Symmetric

s i d s = find ( index .nnz <= 1e7 & ˜ index . i sB inary & . . .

index . numerical symmetry == 1 & . . .

index . sprank == index . nrows & index . i sRea l ) ;

% Square nonsymmetric

nids = find ( index .nnz <= 1e7 & ˜ index . i sB inary & . . .

index . nrows == index . n co l s & . . .

index . sprank == index . nrows & index . i sRea l ) ;

% Rectangular



2.4. NUMERICAL EXPERIMENTS 31

function [ x y ] = snbin (A,nmv,m, n)
% Stocha s t i c matrix−f r e e b inorma l i za t i on fo r nonsymmetric r e a l A.
% [ x y ] = snbin (A,nmv,m, n)
% A i s a matrix or func t i on handle . I f i t i s a func t i on handle , then
% v = A( x ) re turns A∗x and v = A(x , ’ trans ’ ) re turns A’∗ x .
% nmv i s the number o f matrix−vec tor products to perform .
% m,n i s the s i z e o f the matrix . I t i s necessary to s p e c i f y t he se only i f
% A i s a func t i on handle .
% diag ( x ) A diag ( y ) i s approximate ly b inormal i zed .

op = i s a (A, ’ f unc t i on hand l e ’ ) ;
i f (˜ op ) [m n ] = s ize (A) ; end

r = ones (m, 1 ) ; c = ones (n , 1 ) ;
for ( k = 1 :nmv)

omega = 2ˆ(−max(min( f loor ( log2 ( k ) ) −1 , 4 ) , 1 ) ) ;
s = randn(n , 1 ) . / sqrt ( c ) ;
i f ( op ) y = A( s ) ; else y = A∗ s ; end

r = (1−omega )∗ r /sum( r ) + omega∗y .ˆ2/sum( y . ˆ 2 ) ;
s = randn(m, 1 ) . / sqrt ( r ) ;
i f ( op ) y = A( s , ’ t rans ’ ) ; else y = ( s ’∗A) ’ ; end

c = (1−omega )∗ c/sum( c ) + omega∗y .ˆ2/sum( y . ˆ 2 ) ;
end

x = 1 ./ sqrt ( r ) ;
y = 1 ./ sqrt ( c ) ;

Figure 2.2: Matlab implementation of the nonsymmetric stochastic binormalization algorithm
snbin.

r i d s = find ( index .nnz <= 1e7 & ˜ index . i sB inary & . . .

index . nrows ˜= index . n co l s & . . .

index . sprank == min( index . nrows , index . n co l s ) & index . i sRea l ) ;

The predicate index.sprank == index.nrows assures that the matrices have full structural rank,

the condition Theorems 3 and 5 give for a square matrix to be ε-scalable. (But recall that we do

not have a theorem to support rectangular matrices.) At the time of our experiments, only three

complex-valued matrices in the collection have full structural rank and are symmetric, and so we

focus on only real-valued matrices.

Our primary metric for assessing the performance of the algorithms is the reduction in condition

number of the matrix. A secondary metric, used to verify that our algorithms indeed approximately

equilibrate matrices, is based on normalized variance. The normalized variance of the vector v is

nvar(v) ≡ ‖v − µ‖22
‖v‖22

= n
var(v)

‖v‖22
,

where µ is the mean of the elements of v and var(v) is their variance. A useful property is that

0 ≤ nvar(v) ≤ 1. For symmetric matrices, we use the normalized variance of the row 2-norms,

denoted NVR or NVR(A). For nonsymmetric matrices, we use the maximum of the normalized

variance of the row and column 2-norms, denoted MVR or MVR(A).

To evaluate the condition number of a matrix A, we use the Matlab function scond shown in

Figure 2.3. This function uses the sparse methods eigs and svds to obtain the extremal singular
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function c = scond (A, issym )
% cond fo r sparse matr ices .
% c = scond (A, issym )
% A i s a sparse matrix .
% issym i s a boolean : t rue i f A i s symmetric , f a l s e o therwi se .

i f (nargin < 2) issym = f a l s e ; end

s1 = [ ] ; sn = [ ] ;
opts = s t r u c t ( ’ maxit ’ ,1 e3 , ’ d i sp ’ , 0 , ’ issym ’ , issym , ’ i s r e a l ’ , t rue ) ;
[m n ] = s ize (A) ;
t ry

i f ( issym ) % Symmetric
s1 = abs ( e i g s (A, 1 , ’LM’ , opts ) ) ;
sn = abs ( e i g s (A, 1 , ’SM’ , opts ) ) ;

e l s e i f (m == n) % Nonsymmetric square
s1 = svds (A, 1 , ’L ’ , opts ) ;
sn = svds (A, 1 , 0 , opts ) ;

else % Rectangular
s1 = svds (A, 1 , ’L ’ , opts ) ;
i f (m < n) B = A∗A’ ; else B = A’∗A; end

opts . issym = true ;
sn = sqrt ( e i g s (B, 1 , ’SM’ , opts ) ) ;

end

catch
end

i f ( isempty ( s1 ) | | isempty ( sn ) ) c = 0 ; else c = s1 /sn ; end

Figure 2.3: Matlab function to compute the condition number of the sparse matrix A.

values of a matrix. To find the smallest singular value in the thin SVD of the rectangular matrix

A, scond forms the product B = AAT or AT A, depending on the shape of the matrix, and then

uses eigs. We found that this method is more robust, from the perspective of our software testing

framework, than applying svds directly to A.

ssbin and snbin are useful only if the number of matrix-vector products is significantly smaller

than the size of the matrix. We assess the results of the algorithms when they are allowed K = ⌊pn⌋
iteration, where p < 1 and n is the size of the matrix. If the matrix is rectangular, n is the larger of

the number of rows and columns. For ssbin, one iteration corresponds to one matrix-vector product;

for snbin, two, one with the matrix and one with its transpose. We test four values of p: 0.5%, 1%,

2%, 5%. If a matrix is too small, then K is too small; therefore, we consider matrices having size

n ≥ 200, so that the four values of p correspond to minimum values of K of 1, 2, 4, 10. Of course,

in practice, one likely has a much larger matrix.

Since our algorithms are stochastic, their performance on a matrix varies with each application.

We run the stochastic algorithms five times for each matrix and accumulate the results.

Lemmas 8 and 9 allow for a variety of distributions for the random vector involved in the matrix-

vector product. Chen and Demmel [14] use the random vector z such that zi ∈ {−1, 1} is iid, each

value 1 and −1 having equal probability. Their Lemma 6 shows that this distribution has minimal

variance among all distributions such that E zi = 0 and E z2
i = 1. They connect minimal variance to

fast convergence in estimates based on z. We find that the vector u such that ui ∼ N(0, 1) produces
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Figure 2.4: The performance of all methods for symmetric matrices. The title of each figure indicates
the number of matrix-vector products and the performance metric. MVP = p% means that ⌊ pn

100⌋
matrix-vector products are used for a matrix of size n. In these plots, the performance metric is the
condition number of the scaled matrix.

slightly better results for our algorithms, and we always use this distribution. Other algorithms we

discuss in this section use z. Two sets of test results compare u and z.

For convenience, we refer to the algorithm that uses the identity matrix as a scaling matrix as

algorithm a. This algorithm corresponds to doing nothing.

We plot results in three primary formats. Figure 2.7 uses all three, and so we refer to this figure

in the following descriptions.

• We display the distribution in sizes of the matrices in our test sets by a plot of cumulative

density. Let (n, y) be a point on the blue curve. At least y% of the test matrices have size at

least n. See Figure 2.7(a) for an example.

• Let the performance of an algorithm on a particular problem be characterized by a single
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Figure 2.5: The performance of all stochastic methods for symmetric matrices.
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Figure 2.6: The performance of all methods for symmetric matrices; p = 5%. The matrices are (a)
positive definite and (b) indefinite.

scalar metric χ such that a smaller χ indicates better performance. Suppose K algorithms

are run on each problem in a test set of size N . For problem n, let the smallest metric value

be χ̄n. Dolan and Moré [19] introduced performance profiles as shown in Figure 2.7(b) and,

as a more complex example, each of the plots in Figure 2.5. Each curve corresponds to an

algorithm. Consider the point (x, y) on curve k. The interpretation is that algorithm k yields

metric values {χn}Nn=1 that are within a factor x of {χ̄n}Nn=1 on y percent of problems. The

title of each plot gives the test set size N , and the legend indicates the algorithms considered.

A simple rule of thumb when looking at performance profiles is that curves corresponding to

better algorithms go to y = 100% faster.

• The scatter plot, an example of which is Figure 2.7(c), compares one algorithm, for each of the
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Figure 2.7: The performance of sbin on symmetric matrices. (a) Matrix sizes. (b, c) The perfor-
mance metric is the normalized variance of the row 2-norms (NVR). (d, e) The performance metric
is the condition number.
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Figure 2.8: The performance of all methods for nonsymmetric square matrices.

four values of p, against algorithm a. A point (x, y) having the kth color, as indicated in the

legend, is interpreted as follows. Algorithm a yields the metric value x, while the algorithm

yields the value y. The red line is for convenience: any point below the red line improves upon

algorithm a. The points corresponding to p = 5% are bolder than the others.

When constructing a plot of results, we discard any matrix for which we do not have results

from every algorithm included in the plot. Matlab’s eigs and svds functions can consume a large

amount of memory on some large matrices, causing the Matlab process to die. In other cases, the

function scond obtains an erroneous result from eigs or svds, and again we lose a measurement.

Finally, we do not run the deterministic algorithms on some of the largest problems because our

Matlab implementation of dbin is rather slow. It would be be better to implement it as a mex

function. Consequently, we often plot results for subsets of the algorithms on a larger set of matrices

in addition to comparing all the algorithms on a smaller set.

We also discard any matrix that is already binormalized. For both the sets of symmetric and
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Figure 2.9: The performance of all stochastic methods for nonsymmetric square matrices.

nonsymmetric square matrices, we end up discarding only slightly more than 10 matrices each for

this reason. But quite a number of the matrices in the rectangular set are already binormalized.

Symmetric matrices

We test other algorithms, both deterministic and stochastic, in addition to ours. In the case of

symmetric matrices, we consider the following additional algorithms:

• norm(u). Compute the sample mean of the row 2-norms. Use u rather than z. norm(z)

will be considered in the experiments involving nonsymmetric matrices. Let the estimate be

r. Scale A as R−1/2AR−1/2.
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Figure 2.10: The performance of snbin on nonsymmetric square matrices.

• sdiag. The simplest of Bekas, Kokiopoulou, and Saad’s [1] stochastic methods to estimate the

diagonal of a matrix. The algorithm uses z and is as follows:

d =
1

N

N
∑

i

zi(Azi).
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The algorithm computes N matrix-vector products with random vectors zi and then computes

a sample mean. zi(Azi) is an element-wise product between zi and Azi. The quantities

zi
jz

i
j = 1, and zi

jz
i
k ∈ {−1, 1} with equal probability, and so the diagonal elements of A sum

while the off-diagonal elements tend to cancel out. Use the result just as exact Jacobi scaling

uses the diagonal. The method is not intended to produce a preconditioner, but we include

it in our numerical experiments because the diagonal estimators developed in [1] are the only

matrix-free methods of which we know, other than the straightforward norm methods, that

may be considered to produce a preconditioner.

• dbin. We rename Livne and Golub’s [42] method sbin as dbin for clarity; d stands for

deterministic.

• diag. Jacobi scaling. If a diagonal element is 0, substitute 1.

Each iteration of each of these algorithms except diag performs work equivalent to one matrix-vector

product, and so the values of p apply equally to all of them. diag of course requires very little work

at all.

The algorithms are related to each other. ssbin is the stochastic matrix-free algorithm corre-

sponding to the deterministic dbin; similarly, sdiag corresponds to diag. norm(u) is like ssbin in

the sense that each iteration involves estimating the 2-norm of the rows of a matrix.

Figure 2.4 shows performance profiles for all four values of p using condition number as the

metric. As expected, dbin does best on average. But ssbin gets close as p increases. Similarly,

sdiag’s performance approaches that of diag as p increases, as one expects. All the algorithms do

better than a on average.

Whether a matrix is positive definite is important. Figure 2.6 shows results for p = 5%, grouping

the results into those for positive definite and indefinite matrices. Based on the analysis in Section

2.2.3, we expect Jacobi scaling and binormalization to have similar performance on positive definite

matrices, and indeed this expectation is quite clearly borne out. In contrast, on indefinite matrices,

the binormalization algorithms perform significantly better than the Jacobi scaling algorithms.

We recall again that Bekas, Kokiopoulou, and Saad [1] had no intention of devising a method

to compute a diagonal preconditioner using only matrix-vector products. Moreover, they developed

a more complicated algorithm that we did not implement. It uses a sequence of vectors taken

from Hadamard matrices and is particularly effective on banded matrices. Hence any criticism

of sdiag in this context is quite unwarranted. We note simply as a sanity check that even on

positive definite matrices, ssbin significantly outperforms sdiag. On indefinite matrices, a diagonal

estimator, however effective, is ultimately limited by the poor performance of Jacobi scaling.

Next, we show comprehensive results for ssbin. Figure 2.7(a) shows the sizes of the test matrices.

To confirm that ssbin equilibrates matrices, Figures 2.7(b,c) show performance profiles and a scatter

plot using normalized variance of the row 2-norms as the metric. As expected, the NVR is reduced
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significantly on average. Finally, Figures 2.7(d,e) show the same types of plots but once more using

condition number as the metric.

The dots in Figure 2.7(c) have a horizontal trend at slightly above 0.1. If the parameter ω in

ssbin were allowed to go to 0 in a controlled way that obeyed certain conditions, then the theory

of stochastic approximation suggests the normalized variance should go to 0. As we are interested

in finite-iteration—indeed, small-iteration—results, we keep ω fixed after decreasing it for a certain

number of iterations. We believe the horizontal scatter of dots corresponds to the lower limit of the

normalized variance that can be achieved given the final fixed value of ω. One might decrease ω

beyond our final value. Our experience is that if ω becomes small too quickly, more iterations may

be required. As robustness is more important than exact equilibration, we have chosen the final

value of ω accordingly. Still, a careful parameter study of ω for certain classes of matrices appearing

in a particular application may reveal a better sequence {ωk}.

Nonsymmetric square matrices

Our original motivation for this work was equilibrating symmetric matrices, but the existence and

uniqueness theory in Section 2.2 supports both symmetric and nonsymmetric matrices, and ssbin

extends immediately to snbin. Hence we present results for the latter.

In addition to snbin, we test the following other algorithms:

• row norm(u). Estimate the row norm of the matrix using u. Let r be the row norms. The

scaled matrix is R1/2A.

• row norm(z). Estimate the row norm of the matrix using z.

• sk. The Sinkhorn-Knopp iteration.

• row norm. Exact row norm.

The two stochastic row norm methods require only a forward matrix-vector product per iteration.

Since they are being compared with snbin, which requires both a forward and a transpose matrix-

vector product, they are permitted two forward products for every iteration of snbin.

Figure 2.8 shows results for all the methods, and Figure 2.9 for just the stochastic methods.

The random vector u appears to perform slightly better than z in the row norm methods on the

matrices in this set when the number of matrix-vector products is small. For p ≥ 1%, all the methods

do better on average than a.

The most important observation comes from Figure 2.9: as the stochastic row norm methods

require the same work as snbin, and as snbin outperform those methods on average, one might

prefer the more complicated snbin to the simple row norm methods.

Interestingly, the Sinkhorn-Knopp iteration does not do particularly well on these test problems

under the restrictions on the number of matrix-vector products we impose. Indeed, Figures 2.8(c,d)
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show that the iteration’s performance is somewhat worse than snbin’s. We believe the disparity

in performance relates to an observation about the Sinkhorn-Knopp iteration we made early in our

investigations: it takes a while for the iterates to settle down. One can regularize the Sinkhorn-Knopp

iteration in several ways, and we have found—although we do not present the experiments, as they

are just some of many we performed that are outside the scope of this chapter—that certain methods

of regularization can improve the behavior of the Sinkhorn-Knopp iteration in the early iterations,

although at the cost of decreased convergence speed in later iterations. snbin effectively implements

one form of regularization simply by averaging the current iterate with a stochastic estimate of the

next Sinkhorn-Knopp iterate. In any case, regularizing the Sinkhorn-Knopp iteration when one has

access to the elements of the matrix is almost certainly not the right thing to do; rather, one should

implement one of the algorithms described in, for example, [36].

Rectangular matrices

Again, our primary concern was symmetric matrices, but snbin works on both square and rectan-

gular matrices. Recall, however, that we have not developed a theory of ε-scaling for rectangular

matrices.

In our tests, a matrix is transposed, if necessary, so that it has more rows than columns. In

addition to the other stochastic algorithms, we also test column norm (u); it is implemented just

as row norm (u) but for the columns.

Figure 2.11 shows our results. Figure 2.11(b) compares using u and z vectors for the row norm

algorithm. In contrast to the results on the test set of square nonsymmetric matrices, the algorithm

using z slightly outperforms that using u.

Fixed number of matrix-vector products

In the previous experiments, we have set the number of matrix-vector products proportional to the

size of the problem. Figure 2.12 shows results of experiments in which the number of matrix-vector

products is fixed for all problems.

2.5 Summary and conclusions

Scaling a matrix usually reduces its condition number. Perhaps the simplest scaling method for

symmetric matrices is Jacobi scaling. But this method is not effective for many indefinite matrices.

Other simple scaling methods are based on using the row or column norms.

Equilibration in a p-norm can be an effective alternative. Using a combination of theory and

numerical experiments, we showed that symmetric binormalization and Jacobi scaling are about

equally effective on symmetric positive definite matrices. But symmetric binormalization is quite a
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Figure 2.11: The performance of snbin on rectangular matrices.
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Figure 2.12: The performance of the stochastic methods when the number of matrix-vector products
is fixed for all matrices. (a, c) Performance profiles for all stochastic methods on symmetric and
square nonsymmetric matrices, respectively, when 40 matrix-vector products are used. (b, d) The
performance of ssbin and snbin, respectively, for 10, 20, 40, and 80 matrix-vector products.

bit better than Jacobi scaling on indefinite matrices. For nonsymmetric matrices, it is also better,

on average, than simply scaling to unit row or column norms.

Approximate scaling is a practical alternative to exact scaling, and we wanted to develop a theory

characterizing it. We reviewed the theory governing exact scaling and developed the theory of ε-

scaling. It was already known that a (symmetric) square matrix is (symmetrically) scalable if and

only if it has total support (part 1 of Theorem 1 and Theorem 2), and it is diagonally equivalent to

a unique doubly stochastic matrix (part 2 of Theorem 1). We discovered that a (symmetric) square

matrix is (symmetrically) ε-scalable if and only if it has support (Theorems 5 and 3), and the doubly

stochastic matrix C obtained in the limit ε→ 0 is unique (Theorem 6).

While the class of scalable matrices excludes some numerically nonsingular matrices, the class

of ε-scalable matrices is precisely the class of structurally nonsingular matrices and so includes all
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numerically nonsingular matrices. This observation suggests that ε-scaling is a useful formalization

of approximate scaling.

Previously developed scaling methods require access to the elements of a matrix. We developed

the matrix-free stochastic binormalization methods ssbin and snbin to perform approximate sym-

metric and nonsymmetric scaling. The performance of these algorithms on a large test set suggests

that stochastic binormalization scales a matrix using a number of matrix-vector products that is

small relative to the size of the matrix and so is a practically useful method when direct access to

the elements of a matrix is not available.



Chapter 3

A limited-memory quasi-Newton

method

In this chapter, we develop a limited-memory (LM) quasi-Newton (QN) method. It has two main

features: it uses a circular buffer to store QN pairs, and it updates an initial matrix B0 each time

it updates the buffer. We develop an update that sets B0 to a positive diagonal matrix D such that

D−1/2 approximately binormalizes the Hessian.

First, we provide the foundation for the update. Second, we describe the diagonal update and

the rest of the algorithm. Third, we discuss the implementation of the algorithm in the current

version of SNOPT [25] and a future version that will have a new quadratic program solver. Finally,

we describe the performance of the modified version of SNOPT on several test problem sets.

3.1 Background

3.1.1 Notation

Let n be the size of the problem. The difference between two iterates xk+1 and xk is sk ≡ xk+1−xk,

and the difference in the gradients, denoted g, of the Lagrangian at the two iterates is yk ≡ gk+1−gk.

If the particular iteration update index k is irrelevant, the notation s = x+−x may be used. A pair

is the tuple {sk, yk}. A buffer of pairs is a finite sequence of pairs and is denoted {sj , yj}k2

j=k1
for

k1 ≤ k2. Let np be the number of pairs the pair buffer can hold. B = bfgs({sj , yj}k2

j=k1
, B0) denotes

the limited-memory BFGS Hessian approximation, where B0 is the initial matrix, {sj , yj}k2

j=k1
is

the pair buffer, and k2 − k1 + 1 ≤ np. In some cases, the second argument is a vector, say d0, and

B0 = diag(d0).

The key property of quasi-Newton methods is the quasi-Newton, or secant, condition, Bk+1sk =

yk. We omit a review of quasi-Newton methods, as it is far better to read those in, for example, [26]

45
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and [51].

3.1.2 Linear invariance of Broyden-class updates and diagonal scaling

As a first step, we examine the diagonal matrix B0 in the context of Broyden-class updates.

Linear invariance

Let f(x) ≡ f̄(x̄), where x̄ ≡ Cx and C is a nonsingular matrix. Then

g(x) ≡ ∇xf(x) = CT ḡ(x̄) (3.1)

H(x) ≡ ∇2
xf(x) = CT H̄(x̄)C.

Corresponding to s and y are the transformed vectors s̄ = Cs and ȳ = C−T y. Let B be a quasi-

Newton approximation to H that is updated according to a formula in the Broyden class:

vk =
yk

yT
k sk
− Bksk

sT
k Bksk

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k

sT
k yk

+ φk(sT
k Bksk)vkvT

k , (3.2)

where φk is a scalar.

Theorem 11. If B0 = CT B̄0C, and s̄i = Csi and ȳi = C−T yi hold for all si, yi, s̄i, ȳi, then

Bk+1 = CT B̄k+1C.

This property of the update is widely known, although we do not have a specific reference for exactly

the form we use here. The proof is by induction.

Proof. Suppose Bk = CT B̄kC. Then we have the following equalities:

BksksT
k Bk = (CT B̄kC)(C−1s̄k)(C−1s̄k)T (CT B̄kC) = CT (B̄ks̄ks̄T

k B̄k)C

sT
k Bksk = (C−1s̄k)T (CT B̄kC)(C−1sk) = s̄kB̄ks̄k

ykyT
k = (CT ȳk)(CT ȳk)T = CT (ȳkȳk)C

sT
k yk = (C−1s̄k)T (CT ȳk) = s̄T

k ȳk

BkskyT
k = (CT B̄kC)(C−1s̄k)(CT ȳk)T = CT (B̄ks̄kȳT

k )C.
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Hence

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k

sT
k yk

+ φ(sT
k Bksk)vkvT

k

= CT

(

B̄k −
B̄ks̄ks̄T

k B̄k

s̄T
k B̄ks̄k

+
ȳkȳT

k

s̄T
k ȳk

+ φ(s̄T
k B̄ks̄k)v̄kv̄T

k

)

C

= CT B̄k+1C.

Bk is a preconditioner for a steepest-descent method

A quasi-Newton matrix can be thought of as a preconditioner for the problem. Let the QN matrix

Bk = CT C. Consider again the function f(x). The quasi-Newton method gives the search direction

p = −B−1
k g(x) = −C−1C−T g(x) = −C−1ḡ(x̄).

With step size α, the new iterate is

x− αB−1
k g(x) = C−1x̄− αC−1ḡ(x̄) = C−1(x̄− αḡ(x̄));

hence the QN step is the steepest-descent step for the transformed problem in the transformed space.

We think of the transformed problem f̄(x̄) as the preconditioned problem.

That Bk is a preconditioner has a recursive aspect to it. Again, let Bk = CT C. By Theorem 11,

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k

sT
k yk

+ φ(sT
k Bksk)vkvT

k

= CT

(

I − s̄ks̄T
k

s̄T
k s̄k

+
ȳT

k ȳT
k

s̄T
k ȳk

+ φ(s̄T
k s̄k)v̄kv̄T

k

)

C,

where s̄k = Csk and ȳk = C−T yk; hence the Broyden-class update may be thought of as an update

of the identity matrix for a problem preconditioned by Bk = CT C.

Scaling

In the special case that B0 = D is a positive diagonal matrix, D−1/2 is a scaling matrix that scales

the original problem. If we view B0 as a preconditioner, then an effective procedure is to set B0 = D,

where scaling the Hessian by D−1/2 minimizes its condition number over all positive scaling matrices.

In general the Hessian is a function of the iterate and, moreover, we do not have access to it

either by element or by matrix-vector products. This chapter describes a method that approximately

binormalizes the Hessian based on the sequence of pairs {sj , yj}. The diagonal B0 is updated every

time the QN matrix as a whole is updated, and so the diagonal scaling matrix changes with the

iterate.



48 CHAPTER 3. A LIMITED-MEMORY QUASI-NEWTON METHOD

3.1.3 SNOPT

SNOPT’s current limited-memory quasi-Newton method is as follows [25]. Let r be a major iteration

when the pair buffer is empty. B0 is a positive diagonal matrix that initializes the approximation to

the Hessian. For r ≤ k ≤ r + np, the approximation Bk is updated as follows:

qj = Bjsj

θj = (yT
j sj)

−1

φj = (qT
j sj)

−1

Bk = B0 +

k−1
∑

j=r

(θjyjy
T
j − φjqjq

T
j ). (3.3)

This form of the update is called the summation form. To assure positive definiteness in the presence

of numerical errors, the update is rewritten in product form as Bk = GT
k Gk, where

vj = ±(θjφj)
1/2yj − φjqj (3.4)

Gk = B
1/2
0

k−1
∏

j=r

(I + sjv
T
j ).

The sign in vj is chosen to minimize cancellation error when forming the vector.

At update index k = r + np + 1, both the full approximation and B0 are reset to the diagonal of

Br+np+1 (i.e., the diagonal of the approximation that includes the new pair {sj , yj}j=r+np+1), and

all pairs {sj , vj} (including the one for j = r+np +1) are flushed from the pair buffer. Additionally,

the diagonal matrix is multiplied by a scalar to calibrate the unit step. The implementation of

the diagonal matrix B0 in the context of this scheme is quite efficient: two vectors b0 and b̄0 store

diagonal information. b0 is static during the accumulation of pairs in the buffer; meanwhile, b̄0 is

efficiently updated at each major iteration. When the buffer is flushed, b0 is set to b̄0.

A feature of SNOPT’s current method—indeed, a primary motivation for its form—is that the

factorization of the reduced Hessian can be updated directly when SNOPT solves a linearly con-

strained problem.

3.1.4 Our work

For nonlinearly constrained problems and linearly constrained problems for which evaluating the

objective is expensive, SNOPT’s method may be improved in two ways. First, rather than discarding

all pairs at certain iterations, we could maintain a circular buffer of pairs. Second, rather than

updating the initial diagonal B0 only at certain iterations, it could be updated at every iteration if

information is available to support such frequent updates. This chapter develops a method having

these two properties.
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3.1.5 Related work

Possibly the earliest work on a limited-memory method that does not enforce a sparsity pattern

is that of Nocedal [50]. He developed the method L-BFGS, which maintains a circular buffer of a

limited number of pairs. The method forms the foundation for many modern variations.

The simplest updating method for B0 is to set B0 = σkI, where σk is updated at each update of

the QN matrix. Liu and Nocedal [40], among others, set σk = yT
k yk/sT

k yk.

Recent work on quasi-Newton methods includes that of Kolda, O’Leary, and Nazareth [37]

and Gill and Leonard [23, 24]. Kolda and her coworkers studied limited-memory methods using

Broyden-class updates. They showed that only BFGS among the Broyden-class updates maintains

the property of finite termination on unconstrained convex quadratic problems when modified to be

a limited-memory method. They also tested several variants of full- and limited-memory methods,

studying update skipping and various rules for discarding pairs from the pair buffer.

Gill and Leonard [23] developed a quasi-Newton method that pays particular attention to the

subspace spanned by the gradients or, equivalently, the search directions. The method optionally

can limit the subspace from which the next search direction is obtained. In the case of a full-memory

method, their factorization of the BFGS matrix permits the update of B0 = σkI; the authors note

that this can be quite advantageous in the full-memory case, as a poor static matrix B0 = σI can

slow convergence. They developed a limited-memory variant [24] of the method that uses half the

storage of standard limited-memory methods, including the one we use in this chapter.

Several authors have studied methods using diagonal initial matrices B0. SNOPT’s current

method is of course one such method. Nazareth [48] and Zhu, Nazareth, and Wolkowicz [66] have

developed quasi-Newton-like methods—they call them quasi-Cauchy methods—based on the quasi-

Cauchy, rather than quasi-Newton, condition sT
k Dk+1sk = sT

k yk, where Dk+1 is a diagonal matrix.

The condition multiplies each side of the quasi-Newton condition by sT
k . These methods are not

themselves relevant to our work; however, in the conclusion to [66], the authors remark that the

diagonal matrix Dk+1 was incorporated into L-BFGS in the thesis work of Zhu. We shall remark

further on this in a moment.

The work closest to ours is that of Gilbert and Lemarechal [22] and the follow-up work of Veersé

and Auroux [64] and Veersé, Auroux, and Fisher [65]. These authors tested several diagonal updates

with the L-BGFS method on a set of unconstrained problems. Their best diagonal update is, with

the exception of implementation details and a calibration of the unit step length, the same as the

one we develop. However, they do not attempt to understand why the update is effective, nor do

they extend the implementation to constrained problems.

Interestingly, the authors of [65] assessed incorporating the quasi-Cauchy method of [66] into

L-BFGS, as the latter authors had suggested in their concluding section, and found the results were

relatively poor. Prior to discovering the work of Veersé and coworkers, we had implemented this

combined method and could not obtain good results. Our view is that the quasi-Cauchy method,
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restricted as it originally was simply to a diagonal matrix, may be quite effective. But the interpre-

tation of a diagonal B0 as a matrix that attempts to capture curvature information is incompatible

with subsequently updating this matrix to a full one: as the discussion in Section 3.1.2 shows, in

the context of a Broyden-class method, a diagonal B0 really ought to be viewed as a scaling matrix.

Morales [45] conducted a numerical study comparing L-BFGS [50] with SNOPT on a set of

unconstrained problems. Of course SNOPT’s reduced-Hessian method is computationally unsuited

to large unconstrained problems, but Morales correctly used the number of calls to the user function

to assess the two methods. He found that L-BFGS generally outperformed SNOPT.

SNOPT’s current method cannot be directly modified to accommodate a circular buffer and

continual diagonal update. SNOPT stores the pairs {sj , vj}. If B0 changes, then so does each vj , for

vj depends on qj = Bj−1sj , and Bj−1 changes with B0. Furthermore, the efficient implementation

using the vectors b0 and b̄0 is no longer possible, for in general one pair is removed from the circular

buffer at each iteration. If we ignore matters of implementation, we can generalize SNOPT’s update

to the diagonal matrix by setting it to the diagonal of the Hessian approximation at the previous

iteration. Let Bk = bfgs({sj , yj}k−1
j=k−np

, dk), where B0 = diag(dk) is the current initial diagonal

matrix. At the next iteration, dk+1 is set to diag(Bk), the pair {sj , yj}j=k−np
is removed from the

buffer, the pair {sk, yk} is added, and Bk+1 = bfgs({sj , yj}kj=k−np+1, dk+1).

One might imagine other diagonal updates as well. Our objective in this chapter is to develop

a method whose diagonal update has a motivating interpretation, and to implement the method

efficiently in the context of a limited-memory method that uses a circular buffer.

3.2 The diagonal update

This section discusses the diagonal update for our limited-memory quasi-Newton Hessian approxi-

mation.

Let A be a symmetric positive definite matrix. Let Ã = D̃−1/2AD̃−1/2 be binormalized; in

particular, let Bx̃ = d̃ (recall B ≡ A ◦ A and X ≡ D−1; we use B to denote both the element-wise

square of A and the QN matrix, but the meaning should be clear from the context). Consider the

problem

min
x

f(x) (3.5)

for

f(x) ≡ 1

2
xT Ax =

1

2
xT D̃1/2ÃD̃1/2x =

1

2
x̃T Ãx̃,

where x̃ ≡ D̃1/2x. We refer to quantities having a tilde as scaled quantities. The gradient is
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g(x) ≡ ∇xf(x) = Ax and the scaled gradient is g̃(x̃) ≡ ∇x̃f(x̃) = Ãx̃, and so

g(x) = D̃1/2g̃(x̃).

Let the approximate Hessian used in the iteration be B. The search direction is p = −B−1g, the

step is

s = αp = −αB−1g = −αB−1D̃1/2g̃,

and the change in gradient is

y = As = −αAB−1g = −αAB−1D̃1/2g̃,

where α is the step size.

3.2.1 The algorithm design principles

The motivation for our diagonal update is the stochastic symmetric binormalization algorithm of

Chapter 2. In an unconstrained quadratic program, y is related to s by a matrix-vector product.

We explore the hypothesis that expressions involving s and y provide information about the scaling

of the problem, much as the stochastic binormalization algorithm uses matrix-vector products with

the random vector u.

Let us remark, however, that the discussion in this section is not a proof of any sort. Iterations in

optimization algorithms are quite complicated, and it would be difficult, if not impossible, to formu-

late and prove a meaningful theorem about the diagonal update in the context of such complexity.

The update we describe turns out to be useful, and our discussion attempts to explain why.

Our first task is to find an analog in the current setting to the random vector u in the stochastic

binormalization algorithm. It is likely that a scaled vector is better than an unscaled one. x̃ is

not the right one, as the behavior of it depends on the origin. s̃ ≡ D̃1/2s, ỹ ≡ Ãs̃, and g̃ are all

independent of the origin. We shall ultimately use g̃, but we also consider ỹ.

Consequently, our first design principle is that g̃/‖g̃‖ behaves like a random vector sampled

independently from the uniform distribution on the sphere.

Next, the Hessian approximation B, if too complicated, can make analysis difficult. In designing

our diagonal update, we assume B = D, where D is our diagonal; that is, we assume there is no

other quasi-Newton update to B.

Finally, we use an unconstrained convex quadratic problem as our model. Constraints impose

restrictions on the space from which g̃ is drawn. However, just as in our stochastic binormalization

algorithm, our interest is in what happens during only relatively few iterations. If the constraints

are not too restrictive, their presence may not be obvious in the sequence of g̃ vectors until after
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many iterations have occurred.

The motivation for these principles is that many probability density functions may have the

property stated in (2.17)—not necessarily just those pdfs considered in Lemmas 8 and 9—or a

similarly useful one, and there may be many processes that update B along with the diagonal

update that do not significantly affect the behavior of the diagonal update. But these may be

analytically difficult or intractable to study. What we need—and what we believe we achieve with

our design principles—is an analytical setting simple enough to admit theoretical exposition but rich

enough that we can explain, at least partially, why our algorithm works well in practice.

3.2.2 Some useful results

Estimators of the trace

Estimators similar to those in Lemmas 8 and 9 exist for the trace of a matrix. Suppose the matrix

A and the random vector u are independent.

Lemma 13. If the elements of u ∈ R
n have zero mean, positive and finite variance, and are iid,

then EuT Au = η E traceA for finite η > 0.

Proof. The cross terms E uiuj = 0 if i 6= j, and so

E
∑

i

ui





∑

j

Aijuj



 = E

(

∑

i

Aiiu
2
i + cross terms

)

= ηE
∑

i

Aii, where η = Eu2
i > 0.

Lemma 14. If the elements of u ∈ R
n have positive and finite variance and are iid with pdf f , and

f is symmetric around zero, then

E
uT Au

uT u
=

1

n
E traceA.

Proof. A cross term has the form (2.18), and so we are left with

E

∑

i ui

(

∑

j Aijuj

)

∑

i u2
i

= ηE
∑

i

Aii, where η = E
u2

i
∑

j u2
j

= n−1.

Construction of random vectors and matrices

In the absence of analytical results, we can explore properties of an algorithm by running it on

randomly generated data. To obtain generic results, it is important to sample data from a meaningful

distribution.
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We use random spd matrices to test some of the ideas in this chapter. How can we assure that

our experiments capture generic properties of the algorithm? For example, does sparsity matter?

Scaling?

Symmetric positive definite matrices are entirely characterized by an orthonormal matrix and

a positive diagonal matrix: A = QΛQT . A sparse matrix A becomes dense upon rotation by a

generically chosen orthonormal matrix. Hence if an algorithm is invariant to a transformation by

an orthonormal matrix, then sparsity does not affect the mathematical behavior of the algorithm,

although it may affect storage and computation efficiency. Indeed, such an invariance property means

it is enough to sample only from a distribution over positive diagonal matrices. If an algorithm is

not invariant to scaling, then it is not invariant to transformation by an orthonormal matrix.

Let us first discuss vectors. Consider the uniform distribution of points on a unit sphere; for the

sphere embedded in n dimensions, call this distribution S[n]. We generate a unit vector v ∼ S[n] as

follows [47]:

1. Generate v such that each element is an iid normal variable.

2. Set v ← v/‖v‖2.

The distribution S[n] obeys the conditions of Lemmas 9 and 14. Observe that if Q is orthonormal

and v ∼ S[n], then Qv ∼ S[n] as well.

We sample three types of matrices:

1. Positive diagonal matrices. We specify the distribution in the context of the experiment.

2. Symmetric positive definite matrices. We generate A as follows. Let Λ be a positive diagonal

matrix obtained by method 1.

(a) Generate a square matrix A having normally distributed iid elements.

(b) Compute the QR factorization A = QR.

(c) Set A← QΛQT .

3. Scaled spd matrices.

(a) Given the positive diagonal matrix Λ, generate the spd matrix A by method 2.

(b) Given the positive diagonal matrix D, set Ã← DAD.

Expectation of a product

Because Cov(x, y) ≡ E (x− Ex)(y − E y) = Exy − ExE y,

Exy = ExE y + Cov(x, y). (3.6)
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Jensen’s inequality

Consider the random variable x and a convex function φ. Jensen’s inequality [15] is

φ(Ex) ≤ Eφ(x).

Consequently, (Ex)−1 ≤ Ex−1.

Eφ(x) need not have an upper bound: consider φ(x) ≡ x−1 for x allowed to approach 0. Still,

(Ex)−1 can be a good approximation to Ex−1 if x is bounded away from 0. For example, suppose

x has the uniform distribution between a and b, and a, b > 0: x ∼ U [a, b]. Then

(E x)−1 =

(

1

b− a

∫ b

a

x dx

)−1

=
2

a + b

Ex−1 =
1

b− a

∫ b

a

x−1 dx =
ln(b/a)

b− a
.

If b/a ≈ 1, then ln(b/a) ≈ (b− a)/a and so Ex−1 ≈ a−1; similarly, 2/(a + b) ≈ a−1, and so the two

expectations are approximately equal.

The estimate (nuT Au)−1 ≈ (traceA)−1

Lemmas 13 and 14 describe a matrix-free estimate of the trace of a matrix. We examine the

hypothesis that if u ∼ S[n] and A is an n× n spd matrix,

The estimate (nuT Au)−1 ≈ (traceA)−1 is accurate. (3.7)

Our only analytical characterization of the relationship between the two expressions is the fol-

lowing:

(trace A)−1 = (nE uT Au)−1 (by Lemma 14)

≤ E (nuT Au)−1 (by Jensen’s inequality). (3.8)

Rather than further attempt to find a useful analytical characterization, we describe two numerical

experiments that give empirical evidence supporting (3.7).

The first experiment demonstrates that the inequality (3.8) is almost certainly strict:

1. Choose the condition number c of the matrix A, the size of the matrix n, and the number of

trials nt.

2. Generate a vector λ such that minj λ(j) = 1 and maxj λ(j) = c as follows.
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(a) Generate a vector u such that each of n−2 elements is iid and u(j) ∼ U [0, 1], one element

is 0, and another is 1.

(b) Set u← c(i)u.

3. Because we shall compute the estimate nvT Av using a vector v ∼ S[n], and so QT v ∼ S[n]

for an orthonormal matrix Q, we may assume the matrix A is simply the diagonal matrix Λ.

Record trace A = ‖λ‖1.

4. For i from 1 to nt:

(a) Generate a unit vector v ∼ S[n].

(b) Record the following:

i. The estimate nvT Av = n
∑

j λ(j)v(j)2.

ii. The sample mean of this estimate, t(i), using samples 1 to i.

iii. The estimate (nvT Av)−1.

iv. The sample mean of this estimate, r(i), using samples 1 to i.

(c) Plot t and r against the true values traceA and (traceA)−1, respectively.

Figure 3.1(a) shows results for a condition number of 1012 and matrix size n. Observe that the sample

mean for the estimate of traceA converges to traceA, while the sample mean for the estimate of

(trace A)−1 converges to a value greater than (traceA)−1.

The second experiment explores the robustness of the estimate (nuT Au)−1 ≈ (trace A)−1:

1. Choose a vector c, each of whose elements gives a condition number for which it is desired to

obtain samples. Choose a matrix size n. Choose the number of trials nt.

2. For each c(i):

(a) Generate a vector λ as in the first experiment.

(b) Generate a unit vector v ∼ S[n].

(c) As in the first experiment, we may assume the matrix A is simply the diagonal matrix Λ.

For each of nt trials, compute and record the following:

i. traceA = ‖λ‖1.
ii. nvT Av = n

∑

j λ(j)v(j)2.

iii. The relative error r = (trace A)−1−(nvT Av)−1

(trace A)−1 .

(d) Plot the middle p percentile of relative errors.
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Figure 3.1(b) shows results for condition numbers between 102 and 1016, number of trials nt = 104,

and matrix size n = 103. Consistent with the inequality (3.8), the stochastic estimate tends to be

larger than (traceA)−1. But the estimate is certainly meaningful: half the sampled estimates lie

well within ±20% of (traceA)−1 (green line), and 90% lie within ±40%.

We conclude that the hypothesis (3.7) holds and so we may use the relationship between the two

expressions in our subsequent analysis.

3.2.3 The update

Stochastic framework

We have already seen that we have the two basic quantities

s = αp = −αD−1g = −αD−1D̃1/2g̃

y = As = −αAD−1g = −αAD−1D̃1/2g̃.

Let u ≡ g̃/‖g̃‖, and let us replace each instance of αg̃ with u:

s = −D−1D̃1/2u

y = −AD−1D̃1/2u.

We can remove the scalar α‖g̃‖ as later it will cancel out of a quotient.

By Lemmas 9 and 14, these latter s and y vectors yield (recall X = D−1)

E uy2 = n−1BD−2D̃e = n−1BD̃x2 (3.9)

E u(Ds)2 = E ud2s2 = n−1d̃ (3.10)

E usT Ds = n−1trace D̃1/2XD̃1/2 = n−1xT d̃ (3.11)

E uyT s = n−1trace D̃1/2XAXD̃1/2 = n−1trace AD̃X2 (3.12)

E uyT y = n−1trace D̃1/2XA2XD̃1/2 = n−1trace A2D̃X2 (3.13)

E usT s = n−1trace D̃1/2X2D̃1/2 = n−1d̃T x2, (3.14)

where the subscripted u on the expectation operator indicates the replacement by u.

In this section, we derive a deterministic iteration based on the rhs of each of (3.9)–(3.14).

First, observe that E ud2s2 = n−1d̃ immediately provides the scaling matrix. Even better, in the

case of s, we need not make the simplifying assumption B = D. Then E u(Bs)2 = n−1d̃. But y has

quite valuable data and so should not be ignored.

Second, suppose v ≡ ỹ/‖ỹ‖, rather than u ≡ g̃/‖g̃‖, is taken to be sampled from a uniform
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Figure 3.1: Results for two numerical experiments studying the relationship between (traceA)−1

and the estimate (nuT Au)−1. (a) Experiment 1. The x axis is the number of trials used to compute
the sample mean. The y axes correspond to the values traceA, (trace A)−1, and their estimates.
The dashed lines are the true values. (b) Experiment 2. The x axis is the condition number of A;
the y axis is the relative error of the estimate. Each line color corresponds to the indicated middle
percentile of samples.
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distribution on the sphere; and let us replace each instance of αỹ by v. Then

y = −D̃1/2v

s = −A−1D̃1/2v = −D̃−1/2Ã−1v,

where we have assumed A has full rank; and, analogous to the quantities obtained from the E u

operator,

E vy2 = n−1d̃

E vs2
i = n−1x̃i

∑

j

(Ã−1)2ij .

The expression for s2 is not useful. A simple stochastic iteration based on the expression for y2 is

d+ = (1− ω)d + ωy2,

although we shall use a more complicated one in a numerical test. Again, however, we seek an

iteration based on both s and y.

Consider the iteration

d+ = d− d2s2

sT Ds
+

y2

yT s
. (3.15)

An equivalent expression for the diagonal update is

d+ = diag

(

D − DssT D

sT Ds
+

yyT

yT s

)

. (3.16)

The diagonal update is obtained simply by extracting the diagonal of the BFGS update to a diagonal

matrix. As a BFGS update preserves positive definiteness and the main diagonal of an spd matrix

is positive, d+ > 0 if d > 0.

Consider any two random quantities y and z inside the E u operators among (3.9)–(3.14). From

the discussion in Section 3.2.2, E yz 6= E yE z—the two are separated by Cov(y, z) according to

(3.6)—and E y−1 6= (E y)−1, Jensen’s inequality providing a one-sided bound. Furthermore, we

suggested in that same section that E z−1 ≈ (E z)−1 if z is bounded away from 0. In particular, we

discussed the accuracy of the approximation when z ≡ uT Au for u ∼ S[n]; see the discussion of the

hypothesis (3.7). Here we neglect Cov(y, z); and as our denominators will turn out to be of the form

z ≡ uT Au, we make the approximation

E
y

z
≈ E y

E z
. (3.17)
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This approximation justifies our removing α‖g̃‖ when we defined the E u operator.

According to the approximation (3.17) and (3.9)–(3.14),

d2s2

sT Ds
≈ d̃

xT d̃

y2

yT s
≈ BD̃x2

trace AD̃X2
.

Therefore, the deterministic iteration corresponding to (3.15) is

d+ = d− ω

(

d̃

xT d̃
− BD̃x2

trace AD̃X2

)

≡ G(d), (3.18)

where the scalar ω is introduced for generality. Notice that scaled quantities do not appear in (3.15)

but do appear in (3.18). The decomposition A = D̃1/2ÃD̃1/2 of course is not known to us and is for

analysis only: it reveals the stochastic binormalizing process underlying (3.15).

Analysis of the deterministic iteration

The analysis in this section is very similar to that surrounding Theorem 9.

Theorem 12. d = ξd̃, where ξ ≡ n/trace Ã, is the unique fixed point of the iteration (3.18).

Proof. Substituting d = ξd̃ into (3.18) yields

d+ = ξd̃− ωξd̃

n
+

ωBx̃

trace AX̃

= ξd̃− ωnd̃

n trace Ã
+

ωBx̃

trace Ã

= ξd̃,

where we have used the equations Bx̃ = d̃ and traceAX̄ = trace Ā. Hence ξd̃ is a fixed point.

d is a fixed point if

d̃

xT d̃
=

BD̃x2

trace AD̃X2
.

As A is, by assumption, positive definite, so is B by the Schur Product Theorem; and so BD̃ is

nonsingular. Therefore,

xT d̃

trace AD̃X2
x2 = (BD̃)−1d̃.

The solution x2 has the form α(BD̃)−1d̃ for a scalar α. The lhs increases monotonically with α, and
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so the solution is unique.

Lemma 15. The iteration (3.18) is invariant to symmetric permutations.

Proof. Let P be a permutation matrix. Then

xT d̃ = (Px)T (P d̃)

trace AD̃X2 = trace (PAPT )(PD̃PT )(PXPT )2.

Hence if d and d+ satisfy (3.18), then

Pd+ = Pd− ω

(

P d̃

(Px)T (P d̃)
− (PBPT )(PD̃PT )(Px)2

trace (PAPT )(PD̃PT )(PXPT )2

)

= G(Pd),

and so Pd and Pd+ satisfy (3.18) for the matrix PAPT .

Theorem 13. d∗ ≡ ξd̃ is a point of attraction of the iteration (3.18) if 0 < ω < n.

Proof. First we assume A is irreducible.

Let

α(d) ≡ (d̃T x)−1

β(d) ≡ (traceAD̃X2)−1.

Substituting d∗ yields the relations

α(d∗) = n−1ξ

β(d∗) = ξ2(trace Ã)−1 = n−1ξ3,

and using ∂dx = −X2 and ∂xtrace CX = diag(C) for a matrix C yields the derivatives

αd(d) =
d̃T X2

(d̃T x)2

βd(d) =
2 diag(AD̃X3)

(trace AD̃X2)2

αd(d
∗) = n−2x̃

βd(d
∗) =

2ξ diag(AX̃2)

(trace Ã)2
= 2n−2ξ3 diag(AX̃2).
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Then

G(d) = d− ω
(

α(d)d̃− β(d)BD̃x2
)

Gd(d) = I − ω
(

d̃αd(d)−BD̃x2βd(d) + 2β(d)BD̃X3
)

≡ J(d)

J(d∗) = I − ω
(

n−2d̃x̃T − 2n−2ξBx̃ diag(AX̃2)T + 2n−1BX̃2
)

.

Under a similarity transform,

X̃J(d∗)D̃ = I − ω
(

n−2eeT − 2n−2ξX̃Bx̃ diag(AX̃)T + 2n−1X̃BX̃
)

.

As Bx̃ = d̃, X̃BX̃ = X̃d̃ = e; and diag(AX̃) = diag(D̃−1/2AD̃−1/2) = diag(Ã). We obtain

X̃J(d∗)D̃ = I − ω
(

n−2eeT − 2n−2ξe diag(Ã)T + 2n−1X̃BX̃
)

= I − ωn−1

(

n−1e
[

e− 2ξ diag(Ã)
]T

+ 2X̃BX̃

)

.

Let us determine the interval containing the eigenvalues of J(d∗).

1. The first term in parentheses has rank one and the single nonzero eigenvalue

n−1eT
[

e− 2ξ diag(Ã)
]

= 1− 2n−1ξ trace Ã = 1− 2 = −1.

2. As A is positive definite and xi > 0, so is B and X̃BX̃; and as Bx̃ = d̃, X̃BX̃ is doubly

stochastic. Therefore, X̃BX̃ has eigenvalues in the interval (0, 1], and as we are temporarily

assuming that A is irreducible, the eigenvalue 1 has multiplicity one.

3. As e is an eigenvector of each of the two terms in parentheses, we conclude from Lemma 11

that

n−1e
[

e− 2ξ diag(Ã)
]T

+ 2X̃BX̃

has eigenvalues in the interval (0, 2).

4. Finally, if 0 < ω < n, X̃J(d∗)D̃, and so J(d∗) itself, has eigenvalues in the interval

1− ωn−1(0, 2) ⊆ (−1, 1).

Hence ρ(Gd(d
∗)) < 1.

Now suppose A is reducible. By Lemma 15, we can assume A is block diagonal and each block is

irreducible. Our analysis to this point applies to each block separately. As the Jacobian associated
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with each block has spectral radius less than 1, so does the Jacobian as a whole.

Hence by Theorem 10.1.3 of [55], the iteration d+ = G(d) converges locally.

The third term

The denominator of the third term of (3.15) need not be yT s—for example, Theorems 12 and 13

hold with only minor changes to their statements and proofs if the denominator is either sT s or

yT y—but numerical experiments show that yT s is best. This may be explained as follows. Let the

eigenvectors of A in the model QP (3.5) be vi; and the eigenvalues, λi. The diagonal of A may be

written

diag(A) =
∑

i

λi
v2

i

vT
i vi

.

Suppose s is an eigenvector of A and has associated eigenvalue λ. Then y = As = λs and so

y2

yT s
=

λ2s2

λsT s
= λ

s2

sT s
,

which is exactly the contribution to the diagonal of A that the eigenvector s makes.

A numerical experiment

The analysis in this section makes a number of simplifying assumptions, and it does not do more

than attempt to explain the effectiveness of the diagonal update (3.15). Now we describe a numerical

experiment that supports the hypothesis that the diagonal update equilibrates the Hessian.

We implemented the L-BFGS method [50] in a solver for unconstrained problems. The line search

routine is a Matlab translation of the Minpack routine cvsrch [46] by Dianne O’Leary [53]. We

multiply the QN matrix by the scalar α described in Section 3.3.1. We tested the following updates.

The colors refer to the corresponding line colors used in the plots in Figure 3.2.

• (black) B0 = σI, where σ = yT y/sT y [40]. The results of other methods should be compared

against those of this one.

• (blue) Just s. The diagonal update is

d+ =
n

n− 1

(

1− ds2

sT Ds

)

d. (3.19)

When d ∝ d̃, each element of the parenthesized vector is (n− 1)/n; the factor n/(n− 1) in the

update compensates for this.

• (red) Just Bs. An update analogous to (3.19) can produce an indefinite diagonal. Instead, we
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use an update analogous to (2.21):

q = Bs

d+ = (1− ω)
d

‖d‖1
+ ω

q2

‖q2‖1
.

We use ω = 1/10.

• (green) Just y, except for a scalar formed by an inner product with s. We use the first and

third terms of (3.15). To compensate for the loss of the term involving s, we multiply d by

(n− 1)/n:

d+ =
n− 1

n
d +

y2

sT y
.

• (cyan) The algorithm lmcbd, which uses the update (3.15). We discuss this and the next

algorithm in Section 3.3.

• (magenta) The algorithm lmcbd-γ, which uses the update (3.15).

The test problem is the QP f(x) = 1
2xT Ax. A is constructed as follows. First, Ã is created by

generating a random orthonormal matrix Q and a random diagonal matrix Λ having iid diagonal

elements, each the square of a random normal variable, and then setting Ã = QΛQT . Second, a

random diagonal scaling matrix D̃1/2 having condition number 20 is generated according to step 2

of the first experiment in Section 3.2.2. Then A = D̃1/2ÃD̃1/2. The results we show in Figure 3.2

are generic over other distributions and condition numbers for D̃1/2 and Λ, although we chose an

instance from several trials that produced the clearest plots.

The size of the problem is n = 100, and we use a circular buffer that can store np = 10 pairs.

The four plots in Figure 3.2 show the following:

• ‖g‖2. The 2-norm of the gradient.

• f . The function value.

• nvar(X(A ◦A)x). The normalized variance of the 2-norms of the rows of the Hessian A when

scaled according to B0. The constant black line is associated with the constant diagonal σI.

The blue curve shows that the update based on Ds does not reduce the variance of the row

2-norms as effectively as the other updates. The other updates approximately equilibrate A.

• cond(R−T AR−1). The QN matrix can be thought of as a preconditioner, and so this plot

shows the reduction in condition number of A when preconditioned by two separate matrices:

B0 (curving dashed line) and the full QN matrix B (solid). The three horizontal dashed lines

are, from top to bottom, (a) the condition number of A, (b) the condition number of A with
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Figure 3.2: Numerical experiment for various diagonal updates.

Jacobi scaling, and (c) the condition number of A with exact binormalization. The discussion

regarding the relationship between binormalization and Jacobi scaling for spd matrices in

Section 2.2.3 explains why (b) and (c) are quite close to each other. The solid curves—

corresponding to preconditioning by the full QN matrices—fall below (c), but the dashed

curves—corresponding to preconditioning by just B0—level off at (b) and (c), as we expect.

This experimental procedure does not predict the performance of diagonal updates on constrained

problems: when implemented in SNOPT, only the update (3.15), implemented in the algorithm

lmcbd and lmcbd-γ, proved to be robust over the range of test problems we consider in Section

3.5.

3.3 The limited-memory quasi-Newton methods:

lmcbd and lmcbd-γ

In this section we describe two closely related algorithms that use the diagonal update (3.15). We

call these algorithms lmcbd and lmcbd-γ: lm is for limited memory; cb, circular buffer; and d,
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diagonal update.

First we describe a scalar that calibrates the unit step length.

3.3.1 A scalar

After certain steps, the QN matrix H should be multiplied by a scalar to calibrate the unit step

length. SNOPT performs this calibration after the first QN update following the reset of the QN

matrix to a diagonal. We use the same calibration formula as SNOPT; but as we update the diagonal

each time the full QN matrix is updated, we find it best to calibrate at each update.

When updating Bk to Bk+1, the basic calibration formula is

γ̄k =
yT

k sk

sT
k Bksk

; (3.20)

but we also safeguard the value:

γk = min(100,max(10−4, γ̄k)). (3.21)

We maintain a scalar βk that is updated by βk+1 = γkβk. After updating the vector dk to dk+1

according to the diagonal update (3.15), we set B0 = βk+1dk+1.

The calibration formula (3.20) has at least one natural interpretation. At iterate xk, we have a

quadratic approximation to the Lagrangian:

F (p) =
1

2
pT Bkp + gT

k p + F0.

The solution is the step pk = −B−1
k gk. Next, the line search determines the step size αk. The new

iterate is xk+1 = xk + αkpk, and the new gradient is gk+1. As sk = xk+1 − xk = αkpk,

Bksk = −αkgk. (3.22)

Given this information, we would like to determine a scalar γk such that if B̄k ≡ γkBk, then the

unit step is likely acceptable. One obvious choice is γk = α−1
k , for then B̄ksk = α−1

k Bksk = −gk

and the corresponding unit step has already been accepted. But this choice ignores the additional

information gk+1.

Let

f(α) ≡ pT
k F (αpk) =

a

2
α2 + bα + c
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be a scalar quadratic function in the step size α. Then

f ′(α) = aα + b.

As

f ′(0) = b = pT
k gk

f ′(αk) = aαk + b = pT
k gk+1,

we obtain

a =
pT

k (gk+1 − gk)

αk
=

pT
k yk

αk

b = pT
k gk.

Minimizing f(α) gives a step size that can be expected to be better than αk. f ′(ᾱ) = 0 if

ᾱ = − b

a
= −αkpT

k gk

pT
k yk

=
αksT

k gk

sT
k yk

=
sT

k BksT k

sT
k yk

,

where the last equality follows from (3.22). Finally, we set γk = ᾱ−1.

An obvious question is whether one could do better based on information internal to the line

search: fit a higher-order polynomial than a quadratic, for example. In fact, the unit step should be

taken frequently as the algorithm converges, and so the quadratic fit uses all the information that

is typically available without expending any extra user function calls.

A less quantitative interpretation of the calibration formula is revealing. sT
k yk is the change in

the gradient of the Lagrangian along sk. sT
k Bksk is the expected change in the gradient based on

the quadratic approximation F (p). Hence γk > 1 when the actual change is larger than expected,

and γk < 1 when it is smaller.

The classical L-BFGS method of Nocedal [50] uses the scalar σk = yT
k H0yk/yT

k sk, where typically

H0 = I. The interpretation of this scalar is that it broadly accounts for the magnitude of the

curvature of the problem. In Section 3.5, we compare γk with this classical one on unconstrained

problems and find γk gives slightly superior performance.

The update (3.15) is the same as one of those considered in [22, 64, 65], but our scalar is quite

different. Their scalar is

νk =
yT

k D−1
k yk

sT
k yk

,

which is the same as σk for H0 = D−1
k . Using νk on constrained problems is disastrous; and as we

demonstrate in Section 3.5, νk is not as good as γk on unconstrained problems.
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Our view is that γk is superior to both νk and σk because it is motivated by the most natural

interpretation: not as a means to account for the magnitude of curvature, but rather as a means to

calibrate the unit step length given sufficient information to form a quadratic model of the merit

function projected along the current step direction.

3.3.2 lmcbd

Now we can assemble our primary algorithm, lmcbd. If sT
k yk is sufficiently positive, the update is

as follows:

1. Update the diagonal dk to dk+1 according to (3.15).

2. If cond(diag(dk+1)) exceeds a tolerance, reinitialize the quasi-Newton approximation, set

dk+1 = e, reset βk+1, and go to step 5.

3. Compute γk according to (3.20) and (3.21).

4. Set βk+1 = γkβk.

5. Set B0 = βk+1diag(dk+1).

6. Update the pair buffer with the new pair {sk, yk}.

In step 2, other choices are possible; for example, we could set B0 = σI, where σ = yT
k yk/sT

k yk,

and retain the pair buffer. However, we have found that on the rare occasions that the condition

number of diag(dk+1) exceeds our tolerance, it is likely that the current pairs are not helpful for

finding a good descent direction. β0 could be set to 1; but as it is available to us in SNOPT, we use

as a better initial estimate the scalar U0pre**2, a description of which is beyond the scope of this

chapter.

3.3.3 lmcbd-γ

When the iterates are converging, d may remain approximately the same. But how does d behave

during the initial iterations? In fact, making a general statement is not possible: the behavior of

d in the early iterations depends very much on the problem. We have observed, particularly when

the degrees of freedom in a problem is large and so a limited-memory method will typically require

a large number of iterations, that d may change quickly during early iterations and so be unhelpful.

In contrast, on problems having few degrees of freedom, the total number of major iterations can

be quite small, and so a quickly changing d can be useful.

In any case, the problem is not severe; and we certainly do not recommend using the modified form

of lmcbd we describe in this section for anything other than unconstrained problems. Our primary

motivation for this section and the subsequent numerical experiments involving both lmcbd and
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lmcbd-γ is that Veersé and Auroux [65] considered essentially both algorithms—using νk rather than

γk—among the many other diagonal updates they tried, and could not make a firm recommendation

in favor of one over the other. Our objective, then, is to understand how the two algorithms differ.

Suppose γk is much larger than 1. Then evidently the step size αk was quite small, and the

current model of the second-order information greatly overpredicts the extent to which the iterates

should differ. In that case, it may be useful to prevent d from changing by much. Next, suppose γk

is much smaller than 1. Then the step size αk was quite large, and so the iterates greatly differ. In

this case, it may be useful to allow d to change greatly.

In lmcbd, βk =
∏k

j=0 γk. In lmcbd-γ, we set βk ≡ 1 and accumulate γk directly in the diagonal

dk:

d+ =

(

e− ds2

sT Ds

)

γd +
y2

yT s
.

The inclusion of γ in the diagonal update moderates the influence of the term y2/yT s. If γ is large,

the term has a relatively smaller effect; if γ is small, larger.

3.4 Implementation

The software implementations of the diagonal update (3.15) and the scalar β are straightforward,

as each involves only element-wise or inner products among the vectors dk, sk, and yk.

The critical part of the implementation is the limited-memory quasi-Newton method itself. It

must handle a continually updated diagonal initial matrix B0 and a circular buffer.

3.4.1 Implementation in SNOPT 7 and 8

Three computational requirements guide our implementation. First, SNOPT solves the quadratic

program (QP) subproblem using a null-space method. This QP solver accesses the quasi-Newton

matrix through matrix-vector products. Second, the implementation should allow for a fast update.

Third, storage should be minimal: the optimal amount of storage is (2np +1)n: storage for np pairs

and one vector for the diagonal.

The product-form update maintains numerical positive definiteness, and it may be that this

concern should have priority. However, we have implemented a summation-form update and have

not experienced numerical problems. For a circular buffer, the summation form requires less storage.

The product-form stores the pairs {sj , vj} (see Section 3.1.3). vj is a linear combination of yj

and qj . When a pair is removed from the circular buffer, a new Bj−1 corresponds to the old sj , and

so qj and vj are incorrect. Therefore, yj must be stored whether or not vj is. But storage for either

vj or qj must remain, as the product-form matrix-vector product depends on one of these. Hence

the product form requires storage for 3np + 1 n-vectors.
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Byrd, Nocedal, and Schnabel’s [13] compact representation of a limited-memory BFGS method

is useful. Let

Dii = sT
i yi

Lij = sT
i yj for i > j.

Their representation is as follows:

JJT = ST B0S + LD−1LT ≡ C

F =

(

D1/2 0

−LD−1/2 J

)

(3.23)

M =

(

−D LT

L ST B0S

)

= F

(

−I 0

0 I

)

FT

B = B0 −
(

Y B0S
)

M−1

(

Y T

ST B0

)

.

Theorem 2.4 of [13] shows that if B0 is p.d. and sT
i yi > 0, then C is p.d., and so the Cholesky

factorization C = JJT exists.

Let k be the number of pairs in the buffer; here we reserve np for the number of pairs the

buffer can hold. At a particular major iteration, the diagonal is updated, and so ST B0S must be

computed anew in O(k2n) operations. Then the Cholesky factorization C = JJT is computed in

O(k3) operations.

A matrix-vector product u← Bu requires O(kn) operations:

1. Set v ←
(

Y T

ST B0

)

u.

2. Solve Mw = v.

3. Set u← B0u−
(

Y B0S
)

v.

3.4.2 SNOPT in the future: Block-LU QP solver

A future version of SNOPT will use a new QP solver that uses the block-LU method. The block-

LU method is particularly suited to large problems in which the number of active constraints is

substantially fewer than the number of variables; in this situation, the reduced Hessian in the null-

space approach becomes excessively large. Our limited-memory method is well suited to problems

on which the block-LU method will excel, for in such problems, second-order information assumes a

larger role relative to constraints in determining the search direction.
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Consider the quadratic program

minimize
x

gT x +
1

2
xT Hx

subject to Ax ≥ 0.

At a particular iteration, let A0 be the matrix corresponding to the current active set. The KKT

matrix is

K0 =

(

H AT
0

A0 0

)

= L0U0,

where K0 = L0U0 is a factorization of K. The block-LU method handles updates to the active set

by appending blocks V and D to K0 and computing a block factorization of the resulting KKT

system:

(

K0 V

V T D

)

=

(

L0

ZT I

)(

U0 Y

C

)

. (3.24)

See Hanh Huyhn’s thesis [29] for more about the method.

Suppose Bk = bfgs({sj , yj}kj=1, B0). First we consider the product-form BFGS matrix. Let vj

and qj be as they are defined in Section 3.1.3, and recall sT
j qj = φ−1

j . The solutions y1 and y2 are

the same in the following two systems [29]:

(

Bk AT

A

)(

y1

y2

)

=

(

d1

d2

)









B0 AT W

A

WT D

















y1

y2

r









=









d1

d2

0









,

where W =
(

q1 v1 · · · qk vk

)

, and D is block diagonal and has jth block

(

φ−1
j 1

1 0

)

. If

K0 =

(

B0 WT

W

)

, then the second system has the form (3.24), and so the block-LU method can

efficiently incorporate a limited-memory BFGS matrix in product form. If instead the BFGS matrix

is expressed in summation form—Bk = B0 + UUT −ZZT —then we can set [25] W =
(

U Z
)

and

D =

(

I

−I

)

. U and Z can be expressed in at least two ways. The summation form (3.3) shows
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that

uj = (sT
j yj)

−1/2yj and zj = (sT
j qj)

−1/2qj .

Equivalently, in terms of the compact representation’s matrix F in (3.23),

(

U Z
)

FT =
(

Y B0S
)

. (3.25)

Let us consider storage and computation requirements in each case:

1. Store {sj , vj}. The updated diagonal and circular buffer require storing the yj vectors as well.

At each major iteration, each vj vector is recomputed for a total of O(k2n) operations. If the

block-LU QP solver uses the product form, the {sj , vj} pairs can be used without modification.

Hence the minimum storage is (3np + 1)n vectors.

2. Store {qj , yj}. Again, a third set of vectors must be stored, in this case sj . At each major

iteration, each qj vector is recomputed for a total of O(k2n) operations. If the block-LU QP

solver uses the summation form, the {qj , yj} pairs can be used without modification. Hence

the minimum storage is again (3np + 1)n vectors.

3. Store {sj , yj}. The SQP method uses the compact representation. At each major iteration,

ST B0S must be recomputed in O(k2n) operations. The block-LU QP solver can use either

the product or the summation forms; in either case, new pairs {uj , zj} must be computed in

O(k2n) operations using (3.25). Hence the minimum storage is (4np + 1)n vectors.

In all three cases, the diagonal B0 can be used without modification in the QP solver. This analysis

shows that if memory is shared between the outer SQP and inner QP solvers, either of cases 1 and

2 is optimal.

However, this conclusion may be premature. A block-LU QP solver accesses the Hessian approx-

imation directly rather than through matrix-vector products and so can advantageously use external

factorization libraries [29]. It is quite likely that the QP solver must store its own pairs {uj , zj} and

diagonal B0, as these make up some of the elements of the block-LU matrix. Hence the QP solver

requires (2np + 1)n vectors of storage independent of the outer SQP solver. Meanwhile, the SQP

solver requires the storage indicated in each of the three cases: either (3np + 1)n (cases 1 and 2) or

(2np +1)n (case 3). In all three cases, O(k2n) operations must be performed at each major iteration.

Hence the compact representation may have the same advantage for an SQP method based on a

block-LU QP solver as for one based on a null-space QP solver.
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3.4.3 Software

We implemented our method in SNOPT. The user has the choice of setting the parameter Hessian

either to Limited, which is the old limited-memory method, or to LMCBD, which is our new method.

The default limited-memory method is Limited. Except for increasing the number of possible values

for the parameter Hessian, our method does not change SNOPT’s user interface.

We recommend using the new Hessian option on problems for which evaluating the user function

and gradients is time consuming relative to SNOPT’s computations. In particular, for problems

having only linear constraints and for which the objective is evaluated quickly, the original Hessian

= Limited option is probably better.

For our numerical experiments on unconstrained problems, we also implemented our method and

several others in the software lbfgs.f [50].

3.5 Numerical experiments

Our objective in our numerical experiments is to investigate the effectiveness of our algorithms as

well as the robustness of the SNOPT modification.

Framework

We use several test sets:

• COPS 3.0 [20]. The COPS 3.0 test set is a set of high-quality constrained problems imple-

mented in AMPL. We discard the quadratic programs, leaving 20 problems. Each problem

but one has three sizes, and one has four.

• CUTEr/Gill and Leonard [24]. A set of 51 unconstrained problems. We include an additional

problem, dixmaanj, because it is a member of a set of problems Gill and Leonard include.

• CUTEr/Kaustuv [31]. 41 of the 42 constrained problems in Kaustuv’s thesis. We discard

degen2 as we did not find it in our CUTEr archive.

• CUTEr/Byrd, Lu, Nocedal, and Zhu [12]. 33 of the 34 bound-constrained problems from

their test set. One problem, hs25, was removed because for an unresolved reason, the CUTEr

framework considered the problem solved after 0 major iterations. The number of function

calls indicated in the tables of results in [12] suggest those authors had the same issue.

• gpops [58]. 13 optimal control problems distributed with the gpops system.

• The 34 general problems from SNOPT’s examples directory.

• CUTEr/lbfgs.f. 152 unconstrained problems.
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Figure 3.3: Results for the original and modified versions of lbfgs.f.

SNOPT is run on all but the final test set; the original and modified forms of lbfgs.f are run on

the latter.
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Figure 3.4: Results for SNOPT on the COPS 3.0 test set.

When we plot the results of multiple algorithms together, we have to discard problems for

which different solutions are obtained. We also discard any problem on which every algorithm fails.

Consequently, the number of problems in the figures may differ from the numbers indicated in this
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Figure 3.5: Results for SNOPT on the GPOPS example problems.

list.
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Figure 3.6: Results for SNOPT on the CUTEr/Kaustuv test set.

As in Chapter 2, we use performance profiles. Our primary performance metric is the number

of user function evaluations; for two test sets, we also assess CPU time. We use a second plot that

shows performance in a different way. Associated with each algorithm is a sorted list of metric

values, one element for each problem. The sorted list is cumulatively summed and the result is

plotted. The curve associated with a better-performing algorithm increases more slowly than that

associated with a worse-performing algorithm.

In plots showing problem sizes, the size refers to the number of variables in the problem.
We use the following specification file for SNOPT on the CUTEr problems:

Begin SNOPT-Cuter NLP problem

Major Print level 000001

Minor print level 0

Major iteration limit 10000

Iterations limit 100000

Solution no

Hessian Limited
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CUTEr/Gill and Leonard/10 pairs: Function calls (N=42)
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Figure 3.7: Results for SNOPT on the CUTEr/Gill and Leonard test set.

END SNOPT-Cuter NLP problem

We use the default options for SNOPT when running on the COPS 3.0 problems. For the
lbfgs.f code in the CUTEr framework, we use the following specification file:

5 M

10 IPRINT(1)

0 IPRINT(2)

100000 MAXIT

1 diagopt

0.00001 EPS

Results for modifications to lbfgs.f

Figure 3.3 shows results for lbfgs.f on the test set of CUTEr unconstrained problems. We tested

the following methods:

• l-bfgs. The original method.
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CUTEr/Byrd, Lu, Nocedal, Zhu/10 pairs: Function calls (N=26)
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Figure 3.8: Results for SNOPT on the CUTEr/Byrd, Lu, Nocedal, and Zhu test set.

• l-bfgs-γ. The original method, but σk is replaced with γk.

• lmcbd. Our primary algorithm.

• lmcbd-γ. Our secondary algorithm in which γk is used to moderate the diagonal update.

• lmcbd-ν. Our secondary algorithm, but γk is replaced with νk.

Every modification performs better on average than the original method. Figure 3.3(c) shows

that lmcbd-γ outperforms lmcbd-ν: even in the case of unconstrained problems, the scalar γ is

evidently better than ν. Similarly, 3.3(d) shows that l-bfgs-γ slightly outperforms l-bfgs: γ is

also better than σ.

Although lmcbd outperforms l-bfgs, lmcbd-γ is the best of the algorithms tested.

Figure 3.3(f) shows results for just the subset of problems that are in the CUTEr/Leonard set.
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Figure 3.9: Results for SNOPT on the SNOPT example problems.

Results for SNOPT

We tested the modified SNOPT on six test sets having among them four interfaces: AMPL, CUTEr,

Matlab, and Fortran. We tested three modifications to SNOPT:

• Limited. SNOPT’s current Hessian approximation.

• lmcbd. Our primary algorithm.

• lmcbd-γ. Our secondary algorithm in which γk is used to moderate the diagonal update.

• l-bfgs-γ. Our diagonal update is replaced by γkI. Note that γ, rather than σ, is used.

We feel our most important results are those shown in Figure 3.4 for the COPS 3.0 test set. The

test set has generally constrained problems of high quality, and so we believe that the results on this

set are particularly meaningful. Figure 3.4(b) shows results for all the methods. First, both forms

of the lmcbd algorithm outperform the other methods. Second, l-bfgs outperforms Limited in

general, but it does quite a bit worse on a few problems. We conclude that both a circular buffer and

the diagonal update contribute to lmcbd’s success. Figures 3.4(c,d) show results just for lmcbd

and the original method. The second of the two uses CPU time in seconds as the performance

metric. Figure 3.4(e) shows that lmcbd remains effective even when SNOPT is forced to use the

conjugate gradient algorithm, rather than the Cholesky factorization, to solve the reduced Hessian

system once the reduced Hessian’s size exceeds 50. We use the default setting CG Iterations =

100. Until seeing the results of this test, one might be concerned that the richer information in

lmcbd’s Hessian approximation could limit the conjugate gradient algorithm’s ability to reduce the

residual of the reduced Hessian system in the limited number of iterations it is permitted.

Figure 3.5 shows results for the GPOPS example problems. Figures 3.5(b,c) show the results

including and excluding, respectively, the results for l-bfgs, as including this algorithm reduces the
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relatively small test set size by 2 because of different local minimizers. Figure 3.5(e) uses CPU time

as the performance metric. The results are qualitatively similar to those for the COPS 3.0 test set.

Figure 3.6 shows results for the CUTEr/Kaustuv set of constrained problems. lmcbd-γ fares

relatively poorly, but lmcbd continues to be successful.

Figure 3.7 shows results for the CUTEr/Gill and Leonard test set of unconstrained problems.

Figure 3.7(b) shows results similar to Figure 3.3(b,f): lmcbd-γ is superior to lmcbd on uncon-

strained problems. We discuss our interpretation of these results in the next section.

Figure 3.8 shows results for the CUTEr/Byrd, Lu, Nocedal, and Zhu test set of bound-constrained

problems. Results are similar to those on the other test sets of constrained problems.

Finally, as a further check of the robustness of the software, we test SNOPT using the old and

new Hessian approximations on the problems in SNOPT’s examples directory. The results are

shown in Figure 3.9.

3.6 Summary and conclusions

This chapter describes a limited-memory quasi-Newton method, lmcbd, that combines a diagonal

update with a limited-memory quasi-Newton method based on a circular buffer.

Theorem 11 and subsequent analysis suggests that the proper interpretation of a diagonal initial

matrix B0 is that it scales the problem. Therefore, an effective B0 is one that reduces the condition

number of the Hessian by scaling. Motivated by this observation, we developed a diagonal update

that theoretical analysis—albeit quite approximate—and numerical experiments show equilibrates

the Hessian matrix. We combined the diagonal update with a limited-memory quasi-Newton method

based on a circular buffer to create the method we call lmcbd.

We also discussed the importance of scaling the Hessian approximation by a scalar. This topic has

received attention for several decades. σ is often used; and ν was introduced along with a diagonal

update like ours by previous authors. σ and ν are interpreted as approximating the magnitude of

the curvature in the part of the space for which curvature information is missing. In contrast, we

interpret the scalar multiple as calibrating the unit step based on the most recent information. This

observation motivates our adopting γ as lmcbd’s scalar multiple.

We implemented our algorithms in lbfgs.f for experimental purposes and in SNOPT for eventual

release. We conducted a broad range of numerical experiments and made several observations:

• γ is an effective scalar multiple and appears to be better than σ and ν.

• lmcbd is an effective algorithm, although lmcbd-γ performs better on the test set of uncon-

strained problems. We believe the latter holds because γ moderates the change in the diagonal.

The unconstrained problems in our test set typically require many more iterations than the

other test problems, and so moderate changes in the diagonal are beneficial. In contrast, when
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relatively few major iterations are performed on constrained problems, a rapidly changing

diagonal is useful.

• Using a circular buffer in SNOPT, regardless of the form of B0, improves performance on a

number of problems, but on some problems, performance is greatly reduced.

• Combining a circular buffer with a diagonal update, as is done in lmcbd, produces a robust

Hessian approximation that on average outperforms SNOPT’s current method.



Chapter 4

Interpolating quasi-Newton data

from a coarse to a fine mesh

A differential equation is often solved by discretizing it on a sequence of increasingly fine meshes.

Similarly, an optimization problem involving functionals and differential equations can be solved by

discretizing the functionals to produce a sequence of numerical optimization problems defined on

increasingly refined meshes. In this chapter, we develop a method to interpolate our limited-memory

quasi-Newton matrix from a coarse to a fine mesh for problems of this type.

There is a large literature on differential-equation-constrained optimization problems (DECP).

Roughly two types of problems are studied, generally by different researchers: optimal control prob-

lems, such as problems concerning the trajectory of a rocket, that usually involve the ordinary

differential equations of mechanics [10, 3, 58]; and partial differential equation-constrained (PDE-

constrained) problems [4]. Additionally, many researchers have studied methods that solve problems

on multiple meshes of varying fineness: for example, geometric and algebraic multigrid methods [6].

Researchers have used quasi-Newton methods to solve DECPs. Almost 30 years ago, Griewank

and Toint [27] proposed a specialized quasi-Newton method for objectives that are a sum of convex

element functions. The QN matrix is partitioned according to the objective. They remarked, though

did not describe in detail, that one can propagate the element Hessians from one mesh to another.

Kelley and Sachs [32] developed rather technical conditions on the initial matrix B0 so that a quasi-

Newton method takes a number of iterations independent of the mesh fineness.

Interpolating a limited-memory quasi-Newton matrix has not received attention for a simple

reason: in, say, L-BFGS, the data are not sufficiently valuable to justify the complexity of interpo-

lating them from a coarse grid to a fine one. In contrast, the diagonal matrix B0 in lmcbd is quite

valuable, and so interpolation may be justified. This chapter develops such a method.

82
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4.1 Interpolation rules

The primary tool of our method is a set of three interpolation rules: one each for s, y, and d, the quasi-

Newton pair and diagonal of the diagonal matrix B0. We establish these rules in the simpler setting

of approximating integrals, then consider differential-equation-constrained optimization problems.

4.1.1 Integrals

Consider the functional

H[u] ≡
∫

Ω

h(x, u, ∂xu, ∂2
xu, . . .) dx, (4.1)

where ∂i
xu denotes the ith partial derivative of u. The first variation of H[u] is

δH[u] =

∫

Ω

δh dx,

where δ denotes the variation. δh may be quite complicated, but if h and u are sufficiently smooth,

as we assume here, and the variation δu is smooth by construction, then so is δh. (For more on the

variational calculus, see, for example, [39].)

In an optimization problem, boundary conditions must be provided. For simplicity in the present

exposition, we assume the boundary values of u are fixed and so the variation δu is 0 on the boundary

∂Ω. Consequently,

∫

Ω

δh dx =

∫

Ω

Hu δu dx

for a differential operator H and a smooth variation δu: the boundary terms that arise from inte-

grating by parts vanish.

We consider discretizations of the integral in which the approximation has one of two forms:

either it is centered at the nodes, or it is centered at cell centers. u is approximated by ū and the

variation δu by δu. We assume both barred values are defined at the nodes. The approximation has

the form

δH[u] =

∫

Ω

Hu δu dx ≈
∑

i∈N

φ̄iδuiµi, (4.2)

where φ̄i is the approximation to Hu at node location xi, N is the set of nodes, and µi is the weight

associated with node i.

From the other direction, H[u] may be approximated by a node-centered or a cell-centered
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expression. For generality, we write

H[u] ≈
∑

i∈N

h̄1i(ū)µi +
∑

i∈C

h̄2i(ū)νi ≡ H̄(ū);

C is the set of cell indices, and νi is the weight associated with cell i. For future use, x̃i is the location

of the ith cell center. The differential of H̄(ū) is

dūH̄(ū) =
∑

i∈N

∂ūi
H̄(ū)dūi.

If dūi = δui, then δH[u] ≈ dūH̄(ū) and

∑

i∈N

φ̄iδuiµi ≈
∑

i∈N

∂ūi
H̄(ū)dūi.

Consequently, we make the identification ∂ūi
H̄(ū) ≈ φ̄iµi. Additionally, by the approximation (4.2),

∂ūi
H̄(ū)/µi ≈ Hu|x=xi

. (4.3)

Suppose we have two meshes. The mesh to which a quantity belongs is denoted by a superscript

1 or 2. Let I interpolate either a node-centered or a cell-centered quantity. For example, we can

interpolate the solution ū1 on the first mesh to the second mesh:

ū2 ← Iū1. (4.4)

Similarly, we can interpolate φ̄2 ← Iφ̄1. We refer to (4.4) as the first interpolation rule. Both

node-centered and cell-centered quantities may appear in a problem; we use the same symbol I for

both cases, though the underlying implementation of I depends on the case.

To interpolate ∂ū1H̄(ū) requires several extra steps. Because u does not vary on ∂Ω—and, more

generally, boundary conditions are such that ū at the boundary nodes must be treated separately—

the interpolation operator I must be modified to exclude the boundary. Generally, extrapolation

is necessary for points near the boundary. Let the resulting operator be Î. Given two vectors a

and b, let a/b be element-wise division and ab be element-wise multiplication. Let the operator R
restrict the vector a to interior nodes, and let the operator E expand the vector Ra to all nodes.

The latter operator combines the data in Ra with boundary condition data. Î uses only the interior

nodes; hence we adopt the convention that Î performs its own restriction: for example, Î(Ra) is

redundant and is instead written simply as Îa. E and R are the identity operators when applied to

cell-centered quantities.
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As

δH[u] ≈
∑

i∈N 1

φ̄1
i δu

1

i µ
1
i ≈

∑

i∈N 2

φ̄2
i δu

2

i µ
2
i ,

and recalling ∂ūi
H̄(ū) ≈ φ̄iµi and (4.3),

∂ū2H̄2(ū2) ≈ E(R(µ2)Î(∂ū1H̄1(ū1)/µ1)).

Consequently, the interpolation rule for the gradient g ≡ ∂ūH̄(ū) is

g2 ← E(R(µ2)Î(g1/µ1)) :

in words, divide the gradient by the node weights on mesh 1 to obtain the discretization of a smooth

quantity, interpolate the result, then multiply by the node weights on mesh 2. For future use, we

need to write this rule slightly more generally. Let χi = µi if g is node-centered; and χi = νi, if

cell-centered. Then

g2 ← E(R(χ2)Î(g1/χ1)).

This is the second interpolation rule.

For convenience, we denote the first rule by Is: I(ū1) = Is(ū
1); and the second by Iy: Iy(g1) =

E(R(µ2)Î(g1/µ1)).

As a check on our notation, let us evaluate an integral on two meshes. Suppose ū2 and ∂ū2H̄2(ū2)

are interpolated from ū1 and ∂ū1H̄1(ū1), respectively, according to the two interpolation rules; and

each quantity is node-centered. Let u take prescribed values on the boundary. We have

∫

Ω

u Hu dx ≈
∑

i∈N 2

ū2
i φ̄

2
i µ

2
i (approximation to the integral on mesh 2)

≈ (ū2)T ∂ū2H̄2(ū2) (∂ū2H̄2(ū2) ≈ φ̄2µ2)

= Is(ū
1)TIy(∂ū1H̄1(ū1)) (substitution of the two interpolation rules) (4.5)

= I(ū1)TE(R(µ2)Î(∂ū1H̄1(ū1)/µ1)) (definition of Is and Iy)

≈ I(ū1)TE(R(µ2)Î(φ̄1)) (∂ū1H̄1(ū1) ≈ φ̄1µ1)

≈
∑

i∈N 1

ū1
i φ̄

1
i µ

1
i (approximation on mesh 1).

In the final line, we assume each mesh is sufficiently fine so that the approximations to the integral

on the two meshes yield approximately the same values.
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An example in one dimension

Consider the functional

H[u] ≡ 1

2

∫ 1

−1

u2 + u2
x dx

subject to Dirichlet boundary conditions on u. The first variation δH for a variation δu for which

the end points are 0 is

δH[u] =
1

2

∫ 1

−1

δu2 + δu2
x dx

=
1

2

∫ 1

−1

2uδu + 2uxδux dx

=

∫ 1

−1

uδu dx +

∫ 1

−1

uxδux dx

=

∫ 1

−1

uδu dx−
∫ 1

−1

uxxδu dx + uxδu|1−1

=

∫ 1

−1

(u− uxx)δu dx =

∫ 1

−1

Huδu dx,

where Hu ≡ u− uxx.

Now we develop approximations to the integral. Discretize [−1, 1] by N cells with node indices

N ≡ {0, 1, . . . , N}; x0 = −1, xN = 1, and xi+1 > xi. Let the cell indices be C ≡ N \ {0}. The term

u2 of the integrand is approximated by a node-centered sum; the term u2
x, by a cell-centered sum:

1

2

∫ 1

−1

u2 dx ≈
∑

i∈N

ū2
i µi ≡ H̄1(ū)

1

2

∫ 1

−1

u2
x dx ≈

∑

i∈C

(

ūi − ūi−1

xi−1 − xi

)2

νi ≡ H̄2(ū),

where

µi =
1

2















x1 − x0 if i = 0

xi+1 − xi−1 if 0 < i < N

xN − xN−1 if i = N

νi = xi − xi−1

and H̄ ≡ H̄1 + H̄2.

We test our results so far by plotting several quantities for a particular function u discretized on

two meshes in Figure 4.1. Mesh 1 is a combination of 20 linearly spaced points and 20 randomly
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Figure 4.1: Illustration of the interpolation rules.

placed points. Mesh 2 augments mesh 1 by adding 40 more randomly placed points. We use

cubic spline interpolation to define I. In the top panel, all other quantities are compared with

Hu = u − uxx (black): ∂ūiH̄i(ūi)/µi for two meshes i = 1, 2 (blue and red, respectively) and

Iy(∂ū1H̄1(ū1))/µ2 (green). In the bottom panel, the latter three quantities are plotted with their

denominators removed: these curves are the gradients for the discrete problem. The green and red

curves should be compared: the first is the interpolation of the gradient from mesh 1 to 2, while the

second is the exact gradient on mesh 2.

4.1.2 Differential equation constraints

Consider the DECP

inf
u

f(p)

subject to Dk[u; p] = 0 (4.6)

boundary conditions,

where p is a set of parameters, f is a function of p, u is a function defined over the domain Ω, and

D is an operator involving a differential operator. k indexes a particular differential equation in the

system of equations; separating the differential equations may be necessary for the discretization

step. The objective could be a functional, such as H[u]. But one can generally reformulate the
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problem: introduce a differential equation for the integrand in H and append it to D; introduce an

equation that involves a new parameter q, appended to p, and u on the boundary; finally, set the

objective to a function of q.

Discretizing (4.6) yields the numerical optimization problem

min
ū

f(p)

subject to D̄k(ū, p) = 0 (4.7)

boundary conditions.

Corresponding to (4.6) and (4.7), respectively, are the Lagrangians

L ≡ f(p)−
∑

k

∫

Ω

λkDk[u] dx + [boundary condition terms] (4.8)

L̄ ≡ f̄(p)−
∑

k

∑

i

λ̄k
i D̄k

i (ū) + [boundary condition terms].

The index set over which the inner sum occurs in L depends on the discretization of the differential

equations.

L ≈ L̄ and, similarly, corresponding terms in the two Lagrangians are approximately equal.

From these relationships, we can obtain the interpolation rules. ū and D[ū] are functions and so are

interpolated by the first rule:

ū2 ← Is(ū
1)

D2(ū2)← Is(D
1(ū1, p)).

Each of the integrals in (4.8) has the form of the integral (4.1). Hence the interpolation rule for

gradients applies. Let L̄i be discretizations of the continuous Lagrangian on meshes i = 1, 2. Then

we interpolate by the second interpolation rule:

L̄2
ū2(ū2)← E(R(µ2)Î(L̄1

ū1(ū1)/µ1)).

4.1.3 Diagonal B0

The primary application of our interpolation rules is to interpolate the quasi-Newton pairs {s, y} and

the diagonal matrix B0 ≡ diag(d) from one mesh to another. In the context of the model problem

(4.7), s = ū+ − ū and y = L̄+
ū − L̄ū, and so we set

s2 ← Is(s
1)

y2 ← Iy(y1).
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(a) (b)

Figure 4.2: Solutions to the two minimal surface problems on intermediate meshes.

These interpolations motivate the shorthand Is and Iy.

We can determine an interpolation rule for B0 ≡ diag(d) as follows. d is updated by

d+ ← d− (ds)2

sT (ds)
+

y2

sT y
. (4.9)

Consider the final term, y2/sT y. From (4.5), we know that sT y is an approximation to an integral

and so varies over different meshes only by the truncation error. y is interpolated according to the

rule for gradients. Unfortunately, y itself is lost if one has access only to d. We adopt a third

interpolation rule for this case:

d2 ← E(R(µ2)I(
√

d1/µ1))2 = Iy(
√

d1)2.

First the square root of (y1)2 is taken; then the result is interpolated according to the second

interpolation rule; finally, the result is squared.

4.2 Numerical experiments

We test our interpolation rules on two types of problems: the two-dimensional minimal surface

problem and optimal control problems.
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Solver parameters # nodes / # ufn Time (s)

in
t
e
r
p
-s

o
l
n

u
se

-l
m
c
b
d

in
t
e
r
p
-s

y

sa
v
e
-s

y

in
t
e
r
p
-d

ia
g

in
it

-d
ia

g

265 373 567 2191 4057
1 54 74 96 177 242 778.9
2 X 45 57 69 139 181 583.9
3 X X 45 55 77 130 174 559.0
4 X 54 59 83 133 187 594.1
5 X X 45 43 58 102 124 412.3
6 X X X 45 45 60 84 112 368.1
7 X X X 45 47 57 88 110 367.1
8 X X X X 45 46 53 88 110 368.5
9 X X X X X 45 42 51 81 106 352.1

Table 4.1: Results for the problem ms-1.

Solver parameters # nodes / # ufn Time (s)

in
t
e
r
p
-s

o
l
n

u
se

-l
m
c
b
d

in
t
e
r
p
-s

y

sa
v
e
-s

y

in
t
e
r
p
-d

ia
g

in
it

-d
ia

g

341 198 814 3232 12715
1 82 64 159 304 539 8374.5
2 X 60 44 105 190 382 5877.8
3 X X 58 46 121 216 407 6290.4
4 X 82 48 141 204 319 4995.8
5 X X 60 37 94 134 241 3795.6
6 X X X 58 37 95 144 231 3647.8
7 X X X 60 39 95 118 198 3084.1
8 X X X X 60 38 90 124 184 2882.1
9 X X X X X 60 36 83 106 169 2654.1

Table 4.2: Results for the problem ms-2.

4.2.1 The minimal surface problem

The minimal surface problem on a two-dimensional domain minimizes the area of a surface subject

to Dirichlet boundary conditions on the boundary:

inf
u

∫

Ω

√

1 + |∇u|2 dΩ.

We solve the problem using a finite-element method and first-order triangular elements. We use

the Matlab software distmesh [56] to discretize the domain. The objective for the resulting
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unconstrained numerical optimization problem is

F (ū) ≡
∑

i∈C

√

1 + (zx(ū))2i + (zy(ū))2i νi,

where the index i ∈ C is over the triangle (cell) indices, ū is the vector of surface heights at the

nodes, νi = Ai is the area of the ith triangle, and (zx)i and (zy)i are the components of the gradient

of the plane over that triangle. We can reorder the operations so that the objective is written

F (ū) =
∑

i∈N

fi(ū) µi (4.10)

for some set of nonlinear functions fi. Here the index i is over the node indices and µi is the sum

of the areas of the triangles involving node i.

Specifying a problem requires creating a domain and setting the Dirichlet boundary conditions.

We consider two problems; we call them ms-1 and ms-2. Their solutions on intermediate meshes

are shown in Figure 4.2.

A problem is solved on a sequence of meshes. The first mesh is coarse and uniform. Each

subsequent mesh is finer than the previous, and the area of a triangle is adapted to the solution on

the preceding mesh. Since the problems are solved to a high precision on each mesh, the sequence of

meshes is the same for all parameter variations. Indeed, to save time, we generate the meshes once

and then use them for all other parameter variations.

We developed an unconstrained solver in Matlab that implements the L-BFGS [50] method

with our variations and uses the line search routine cvsrch.m [53]. The solver parameters are all

boolean valued. In all cases, the circular buffer can store 10 pairs. Varying parameters include the

following (abbreviations refer to our tables of results):

• interp-soln. Interpolate the solution ū using cubic spline interpolation.

• use-lmcbd. If true, use lmcbd; otherwise, use the standard L-BFGS algorithm.

• interp-sy. Interpolate the pairs {s, y}. The pairs that are interpolated are acquired when

the magnitude of the gradient is the square root of the desired tolerance. The pairs obtained

in the final iterations tend not to be as helpful.

• interp-diag. Interpolate the final diagonal d from the iteration on the coarse mesh to the

fine mesh.

• init-diag. Initialize the diagonal d in B0 = diag(d) to R(µ2). If interp-diag is true, then

ignore this option except on the coarsest mesh. This option uses exactly the same information

and user code as interpolating the QN matrix.
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• save-sy. If interp-qn is true, retain the interpolated pairs in a static buffer and never discard

them. Consequently, the QN matrix for a mesh has up to 10 more pairs in its static buffer

than the QN matrix for the previous mesh. When computing a matrix-vector product, the

order of the pairs is the static buffer from oldest to newest, then, as usual, the circular buffer

from oldest to newest.

Tables 4.1 and 4.2 show our results. The left column numbers the different tests. The check

marks indicate which solver options are active. In the “# nodes / # ufn” block, each column shows

the number of user function calls required to solve the problem on the mesh having the indicated

number of nodes. The right column shows the accumulated time in seconds to solve the problem on

all the meshes.

The results accord with the hypothesis that interpolating the solution and quasi-Newton matrix

from one mesh to another is useful.

Lines 1 and 5 are controls. In line 1, each problem is solved independently of the others and

L-BFGS is used.

Lines 2 and 3 show that using lmcbd improves performance, relative to line 1, on all meshes;

and initializing the diagonal is useful.

In line 4, the solution is interpolated. The results shown in all subsequent lines should be

compared with this one.

Lines 5 and 6 are to line 4 as lines 2 and 3 are to 1; and the two sets of results have similar

behavior.

In line 7, the diagonal matrix B0 is interpolated in addition to the solution. Lines 6 and 7 suggest

that initializing B0 to R(µ2) or interpolating the previous mesh’s B0 are about equally effective.

Lines 8 and 9 interpolate the {s, y} pairs in addition to B0; line 8 simply initializes the new QN

matrix with them, while line 9 saves them in a static buffer that grows with each succeeding mesh.

For ms-1, lines 6 to 9 show about equal performance; for ms-2, these lines show performance

that continues to improve significantly as more aggressive methods are applied.

4.2.2 Optimal control

Next we implement the interpolation rules to solve a set of optimal control problems. We examine

four problems:

• brach. We use the energy formulation of the brachistochrone problem. The position of the

ball is given by (x, y). At the initial time, it has zero velocity, height, and position in the x

direction; at the final time, it has height −1 and x position 1. The ball’s kinetic energy is

Ek ≡ 1
2 (ẋ2 + ẏ2) and its potential energy is Ep ≡ gy. The energy of the ball is conserved, and

so ∆Ek + ∆Ep = 0. The ODE relate position and velocity.

• glider. The glider problem from COPS 3.0 [20].
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# nodes / # ufn Time (s)

u
se

-l
m
c
b
d

in
t
e
r
p
-d

ia
g

10 19 37 73 145 289 577 1153
1 99 47 61 75 100 124 135 166 682.3
2 X 99 21 24 25 24 34 26 34 80.0
3 X 286 31 42 59 68 76 90 73 344.2
4 X X 286 14 16 27 45 31 55 39 127.9

# nodes / # ufn Time (s)
u
se

-l
m
c
b
d

in
t
e
r
p
-d

ia
g

10 20 40 80 160 320
1 99 57 84 136 180 207 108.3
2 X 99 42 39 38 55 80 40.3
3 X 286 44 63 83 120 155 80.5
4 X X 286 21 24 22 32 40 23.5

Table 4.3: Results for the problem brach.

# nodes / # ufn Time (s)

u
se

-l
m
c
b
d

in
t
e
r
p
-d

ia
g

10 19 37 73 145
1 67 61 41 64 72 22.2
2 X 67 34 54 48 56 16.7
3 X 34 62 32 40 73 19.7
4 X X 34 37 29 35 34 12.4

# nodes / # ufn Time (s)

u
se

-l
m
c
b
d

in
t
e
r
p
-d

ia
g

10 20 40 80 160
1 67 105 249 224 269 86.8
2 X 67 60 82 72 88 28.5
3 X 34 43 207 204 840 180.5
4 X X 34 175 59 43 78 25.4

Table 4.4: Results for the problem glider.

• rocket. The rocket problem from COPS 3.0.

• vanderpol. A test problem from SNOPT’s test set.

We discretize all the problems except glider using the trapezoid rule. We believe because of the

formulation of the control, the trapezoid rule for glider can produce a problem having meaningless

solutions. As this issue is unrelated to our work, we simply use the implicit Euler rule for this

problem. We present results for both uniform and randomly generated nonuniform meshes. The

latter is meant to simulate adaptive refinement, for we did not implement true adaptive refinement

in these tests.
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# nodes / # ufn Time (s)
u
se

-l
m
c
b
d

in
t
e
r
p
-d

ia
g

10 19 37 73 145
1 45 25 28 29 9 6.5
2 X 45 11 10 29 21 7.3
3 X 27 19 34 73 15 10.6
4 X X 27 27 34 25 8 6.2

# nodes / # ufn Time (s)

u
se

-l
m
c
b
d

in
t
e
r
p
-d

ia
g

10 20 40 80 160
1 45 15 25 37 48 14.4
2 X 45 10 11 20 16 6.6
3 X 27 33 17 19 34 10.3
4 X X 27 22 19 21 19 7.6

Table 4.5: Results for the problem rocket.

# nodes / # ufn Time (s)

u
se

-l
m
c
b
d

in
t
e
r
p
-d

ia
g

10 19 37 73 145
1 39 10 9 8 8 3.3
2 X 39 20 18 13 17 5.3
3 X 16 9 10 9 9 3.2
4 X X 16 12 12 14 12 4.1

# nodes / # ufn Time (s)

u
se

-l
m
c
b
d

in
t
e
r
p
-d

ia
g

10 20 40 80 160
1 39 18 24 26 32 9.0
2 X 39 27 30 28 51 12.5
3 X 16 16 22 22 28 7.8
4 X X 16 14 22 19 28 7.6

Table 4.6: Results for the problem vanderpol.

Recall that the interpolation rules act on only the interior nodes. We set the value of a boundary

node on the fine mesh to its value on the coarse mesh.

We test four SNOPT parameter variations. We use either the original Hessian = Limited QN

method or the new Hessian = LMCBD method; and we either interpolate just the solution, or both the

solution and B0. Enabling interpolation of the QN matrix requires altering SNOPT; unfortunately,

these alterations at present are little more than a hack and so cannot be released.

Tables 4.3–4.6 summarize the results. In each figure, the first table shows results for the sequence

of uniform meshes; the second, the nonuniform meshes. Our objective in performing these tests is to

validate the interpolation rules on generally constrained optimization problems; exact performance

details are not of particular interest.

On the problems brach and glider, LMCBD generally outperforms SNOPT’s original QN

method, and interpolating B0 is beneficial. On the problem rocket, interpolating the diagonal

improves performance, but LMCBD and SNOPT’s original method perform about equally well. On

the problem vanderpol, all variations perform about equally well.
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4.3 Summary and conclusions

We derived three interpolation rules—one each for s, y, and B0 = diag(d)—for our limited-memory

quasi-Newton method based on identifying correspondences in the continuous and discretized opti-

mization problems. Then we tested the rules on two 2D finite-element problems and four optimal

control problems. We found that the interpolation rules improve performance (ms-1, ms-2, brach,

glider, rocket)—often markedly (ms-2, brach, glider)—or at least do not reduce it (vander-

pol).

Unlike the methods reported in Chapters 2 and 3, these interpolation rules cannot be imple-

mented as a black box; they require problem-dependent information. One application might be to

implement these rules within optimal control or PDE-constrained packages that implement partic-

ular discretization methods. Though a package’s developer would have to implement the method,

the package’s users would not.
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[19] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.

Math. Program., 91(2):201–213, 2002.
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[46] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. User guide for MINPACK-1. Technical report,

Argonne National Lab., 1980.

[47] M. E. Muller. A note on a method for generating points uniformly on n-dimensional spheres.

Comm. ACM, 2(4), 1959.

[48] J. L. Nazareth. The Newton and Cauchy perspectives on computational nonlinear optimization.

SIAM Review, 36(2):215–225, 1994.

[49] A. Neumaier. Scaling and structural condition numbers. Lin. Alg Appl., 263:157–165, 1997.

[50] J. Nocedal. Updating quasi-Newton matrices with limited storage. Math. Comput., 35:773–782,

1980.

[51] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

[52] D. P. O’Leary. Scaling symmetric positive definite matrices to prescribed row sums. Lin. Alg.

Appl., 370:185–191, 2003.

[53] Dianne O’Leary. Translation of MINPACK subroutine cvsrch, 1991.

http://www.cs.umd.edu/~oleary/a607/cvsrch.m.

[54] M. Olschowka and A. Neumaier. A new pivoting strategy for Gaussian elimination. Lin. Alg.

Appl., 240:131–151, 1996.

[55] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several

Variables. SIAM, 2000.

[56] G. Strang P.-O. Persson. A simple mesh generator in MATLAB. SIAM Review, 46(2):329–345,

2004.

[57] B. N. Parlett and T. L. Landis. Methods for scaling to double stochastic form. Lin. Alg. Appl.,

48:53–79, 1982.

[58] A. V. Rao, D. A. Benson, C. L. Darby, C. Francolin, M. A. Patterson, I. Sanders, and G. T.

Huntington. Algorithm: GPOPS, a matlab software for solving multiple-phase optimal control

problems using the Gauss pseudospectral method. ACM Trans. Math. Software, Accepted June

2009.

[59] H. Robbins and S. Monro. A stochastic approximation method. Ann. of Math. Stat., 22(3):400–

407, 1951.



100 BIBLIOGRAPHY

[60] D. Ruiz. A scaling algorithm to equilibrate both rows and columns norms in matrices. Technical

Report RT/APO/01/4, ENSEEIHT-IRIT, 2001.

[61] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matrices.

Ann. Math. Statist., 35:876–879, 1964.

[62] R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices.

Pacific J. Math., 21(2):343–348, 1967.

[63] A. van der Sluis. Condition numbers and equilibration of matrices. Numer. Math., 14:14–23,

1969.
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